forked fromLitLeo/TensorRT_Tutorial NotificationsYou must be signed in to change notification settings Fork2 Star0 Code Pull requests Actions Projects Wiki Security Insights Additional navigation options Files master Samples blogs cublas&cudnn_int8_demo ...
$ jupyter notebook --port=8888 --no-browser --ip=0.0.0.0 --allow-root 打开tutorial-runtime.ipynb 笔记本,并按照其步骤操作。 TensorRT Python运行时API直接映射到在C ++中运行引擎中描述的C ++ API 。 8.其他资源 参考官方文档 8.1。词汇表 Builder TensorRT的模型优化器。构建器将网络定义作为输入,执行...
注:若pycuda安装失败,尝试到https://www.lfd.uci.edu/~gohlke/pythonlibs/#pycuda下载python版本对应的最新的本地安装文件安装 然后参照官方给的示例代码运行TensorRT模型推理:tutorial-runtime.ipynb 下面给出Unet语义分割模型运行tensorrt推理的主要代码: (1) 导入TensorRT推理需要的库 importpycuda.driverascudaimport...
运行教程,使用 engine: $ ./bin/segmentation_tutorial [01/07/2022-20:20:34] [I] [TRT] [MemUsageChange] Init CUDA: CPU +322, GPU +0, now: CPU 463, GPU 707 (MiB) [01/07/2022-20:20:34] [I] [TRT] Loaded engine size: 132 MiB [01/07/2022-20:20:35] [I] [TRT] [MemUsage...
原腾讯高级研究员,大连理工大学硕士,毕业后一直在腾讯从事语音领域深度学习加速上线工作。近10年CUDA开发经验,近5年TensorRT 开发经验,Github TensorRT_Tutorial作者。 康博 高级研究员,主要方向为自然语言处理、智能语音及其在端侧的部署。博士毕业于清华大学,在各类国际AI会议和刊物中发表论文10篇以上,多次获得NIST主办的...
$ ./bin/segmentation_tutorial [01/07/2022-20:20:34] [I] [TRT] [MemUsageChange] Init CUDA: CPU +322, GPU +0, now: CPU 463, GPU 707 (MiB) [01/07/2022-20:20:34] [I] [TRT] Loaded engine size: 132 MiB [01/07/2022-20:20:35] [I] [TRT] [MemUsageChange] Init cuBLAS/cu...
$ ./bin/segmentation_tutorial [01/07/2022-20:20:34] [I] [TRT] [MemUsageChange] Init CUDA: CPU +322, GPU +0, now: CPU 463, GPU 707 (MiB) [01/07/2022-20:20:34] [I] [TRT] Loaded engine size: 132 MiB [01/07/2022-20:20:35] [I] [TRT] [MemUsageChange] Init cuBLAS/cu...
Check out the Multi-Node Generative AI w/ Triton Server and TensorRT-LLM tutorial for Triton Server and TensorRT-LLM multi-node deployment. Model Parallelism Tensor Parallelism, Pipeline Parallelism and Expert Parallelism Tensor Parallelism, Pipeline Parallelism and Expert parallel...
TingsongYu / PyTorch-Tutorial-2nd Star 3.5k Code Issues Pull requests 《Pytorch实用教程》(第二版)无论是零基础入门,还是CV、NLP、LLM项目应用,或是进阶工程化部署落地,在这里都有。相信在本书的帮助下,读者将能够轻松掌握 PyTorch 的使用,成为一名优秀的深度学习工程师。 computer-vision pytorch tensorrt ...
This tutorial uses a C++ example to walk you through importing an ONNX model into TensorRT, applying optimizations, and generating a high-performance runtime engine for the datacenter environment. TensorRT supports both C++ and Python and developers using either will find this workflow discussion ...