为了实施这个想法,通过 Scikit-Learn,你可以创建一个管道(Pipeline)去包含多项式特征(PolynomialFeatures)变换(在 121 页的“Polynomial Regression”中讨论),然后一个StandardScaler和LinearSVC。让我们在卫星数据集(moons datasets)测试一下效果。 代码语言:javascript 复制
Scikit-learn是一个简单而高效的机器学习库,适用于各种统计和机器学习任务。 3.2 Scikit-learn的优缺点 3.2.1 优点: 易于学习和使用: Scikit-learn的API设计简单,容易上手。 丰富的算法和工具: 提供了大量的经典机器学习算法和工具。3.2.2 缺点: 不支持深度学习: 由于设计目标,Scikit-learn并不支持深度学习任务。
Scikit-learn 简介 Scikit-learn是一个基于Python的开源机器学习库,其提供了多种标准的机器学习算法和工具,例如分类、回归、聚类等。Scikit-learn还包括了数据预处理、特征选择、模型评估等功能,使得开发者可以更加方便地进行机器学习任务。 使用方法 下面是一个使用Scikit-learn进行手写数字识别的实例: from sklearn.mod...
Scikit-learn是使用最广泛的Python机器学习库之一。它拥有标准简单的界面,可用于预处理数据以及模型的训练、优化和评估。该项目最初始自David Cournapeau在Google Summer of Code活动中开发的项目,并于2010年首次公开发布。自创建以来,该库已发展成为了一个丰富的生态系统,可用于开发机器学习模型。Scikit-learn的优点...
scikit-learn 包具有极强的适应性和实用性,可用于各种现实世界的任务,例如开发神经图像、预测消费者行为等。 Scikit-learn的缺点: 如果你更喜欢深度学习,scikit-learn就不是那么合适你学习。 因为它使用起来比较简单,所以可能会导致一些初级数据科学家懒得去学...
Scikit-Learn 非常易于使用,同时高效实现了许多机器学习算法,因此它是学习机器学习的绝佳入门点。它由 David Cournapeau 于 2007 年创建,现在由法国国家计算机与自动化研究所(Inria)的一组研究人员领导。 TensorFlow 是一个更复杂的分布式数值计算库。它通过在数百个多 GPU(图形处理单元)服务器上分布计算,使得训练和...
原文:Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 译者:飞龙 协议:CC BY-NC-SA 4.0第六章:决策树 决策树是多功能的机器学习算法,可以执行分类和回归任务,甚至多输出任务。它们是强…
sklearn.datasets包主要包含三种类型的函数:fetch_*函数,如fetch_openml()用于下载真实数据集,load_*函数用于加载与 Scikit-Learn 捆绑的小型玩具数据集(因此不需要通过互联网下载),以及make_*函数用于生成虚假数据集,对测试很有用。生成的数据集通常作为包含输入数据和目标的(X, y)元组返回,都作为 NumPy 数组。其...
强化学习(RL)如今是机器学习的一大令人激动的领域,当然之前也是。自从 1950 年被发明出来后,它在这些年产生了一些有趣的应用,尤其是在游戏(例如 TD-Gammon,一个西洋双陆棋程序)和机器控制领域,但是从未弄出什么大新闻。直到 2013 年一个革命性的发展:来自英国的研究者发起了Deepmind 项目,这个项目可以学习去玩任何...
Scikit-Learn 在训练后自动计算每个特征的重要性得分,然后将结果进行缩放,使所有重要性的总和等于 1。您可以使用feature_importances_变量访问结果。例如,以下代码在鸢尾花数据集上训练一个RandomForestClassifier(在第四章介绍),并输出每个特征的重要性。看起来最重要的特征是花瓣长度(44%)和宽度(42%),而花萼长度和...