主要有两种方式进行安装:pip、conda,pip安装tensorflow-gpu的时候,需要首先配置cuda和cudnn环境,并且需要与tensorflow的版本对应,用pip的方式进行安装,几乎可以安装所有的版本,cuda和cudnn的安装参考cuda和cudnn安装文档,在此不在叙述。conda安装的时候,不用单独配置cuda和cudnn,但是在安装之前尽量去官网查看,有那些版本...
GPU版本的 TensorFlow 与CUDA和cuDNN的对应版本关系可以参考:https://www.tensorflow.org/install/source#tested_build_configurations。 可以看到如果选择 CUDA10.0 那么对应的 cuDNN是7.4,TensorFlow则需要1.13-2.0版本。 下载CUDA 去NVIDIA 下载 CUDA,下载地址为:https://developer.nvidia.com/cuda-downloads。本次使...
| Tensorflow 1.x | cuDNN 5.1/6.0 |从上表可以看出,Tensorflow 2.x需要cuDNN 7.6/7.4版本,而Tensorflow 1.x则需要cuDNN 5.1/6.0版本。如果您需要使用GPU进行Tensorflow计算,则需要安装与您所使用的Tensorflow版本兼容的cuDNN版本。综上所述,在安装和配置Tensorflow时,需要考虑到与Python、CUDA、cuDNN的版本对应...
比如conda search下面的只有11.3,那么就安装对应的cudnn=8.2.1,即tensorflow=2.5.0。 tensroflow-gpu 1.15(update 需要python3.5-3.6,如果无法安装,参考文末方法): condainstallcudatoolkit=10.0condainstallcudnn=7.3.1pipinstalltensorflow-gpu==1.15 tensorflow-gpu 2.4.1(update 需要python3.7-3.9,最好3.9,如果无...
tensorflow-gpu版本2.0.1 CUDA版本10.0 cuDNN版本7.6.5 2 TensorFlow,python,cuda,cudnn对应关系表 3 安装cuda 安装CUDA时要注意CUDA版本和显卡驱动版本是一一对应的,如果CUDA版本和显卡驱动版本不兼容会产生不必要的错误。 首先查询一下本机的显卡驱动版本,在命令行输入: ...
如图,tensorflow-gpu最高版本为2.10.0,对应CUDA版本为11.2,cuDNN版本为8.1。 我的显卡支持的CUDA版本比11.2高,满足tensorflow-gpu 2.10.0的要求,所以直接安装这个版本。 假如你的显卡只支持CUDA11.0,按照上图显示,最高就只能安装2.4.0版本的tensorflow-gpu。
一、TensorFlow对应版本对照表 版本Python 版本编译器cuDNNCUDA tensorflow-2.9.0 3.7-3.10 8.1 11.2 tensorflow-2.8.0 3.7-3.10 8.1 11.2 tensorflow-2.7.0 3.7-3.9 8.1 11.2 te
要搭建TensorFlow的GPU版本,首先需要的必备条件就是一块能够支持CUDA的NVIDIA显卡,因为在搭建TensorFlow的GPU版本时,首先需要做的一件事就是安装其基础支持平台CUDA和其机器学习库cuDNN,然后在此基础上搭建TensorFlow GPU版本。 其次还要了解一下不同的TensorFlow版本所需要对应安装的CUDA和cuDNN版本是多少,因为在TensorFlow...