不同版本的tensorflow-gpu与CUDA对应关系如下表所示(图片有点旧了,python版本是2.7和3.3-3.8): 对于版本号大于1.13的tensorflow-gpu的1.x版本,如1.14、1.15,建议安装CUDA10.0,不要安装CUDA10.1,安装后会提示缺少很多库文件,而导致GPU版本的tensorflow无法使用,如下图所示: 如果是2.0以上的tensorflow,按下面列表安装(20...
这里可以到看到 CUDA 版本是 9.0,cuDNN 版本是 7.0.5,官方推荐的 tensorflow 对应版本是:1.5 / 1.6 / 1.7 / 1.8 / 1.9 / 1.10 / 1.11 / 1.12 如果报错版本不对的话,可以按照下面的解决方法: pip uninstall tensorflow-gup==1.0.1 pip install tensorflow-gpu==1.5.0 1. 2. 测试 安装好以后,可以进行...
要搭建TensorFlow的GPU版本,首先需要的必备条件就是一块能够支持CUDA的NVIDIA显卡,因为在搭建TensorFlow的GPU版本时,首先需要做的一件事就是安装其基础支持平台CUDA和其机器学习库cuDNN,然后在此基础上搭建TensorFlow GPU版本。 其次还要了解一下不同的TensorFlow版本所需要对应安装的CUDA和cuDNN版本是多少,因为在TensorFlow...
先用conda search tensorflow和conda search tensorflow-gpu来查询都有那些版本 conda install tensorflow-gpu==2.0.0 安装CUDA和CUDDN 确保显卡必须是NVDIA的 在C:\ProgramData\Anaconda3\Lib\site-packages\tensorflow\python\platfor下的build_info.py文件可以看到需要的cuda和cudnn版本号 CUDA 显卡型号支持:https://...
为了充分利用GPU的计算能力,我们需要正确地配置CUDA和cuDNN。本文将为您详细介绍TensorFlow各个GPU版本所对应的CUDA和cuDNN版本,帮助您更好地配置和使用TensorFlow。1. TensorFlow 2.x系列TensorFlow 2.x系列是最新版本的TensorFlow,它支持CUDA 10.1和cuDNN 7.6。以下是TensorFlow 2.x系列与CUDA和cuDNN的对应关系: ...
2. 安装GPU版本的tensorflow,及其cuda和cudnn: 同样的安装tensorflow一样,先将对应版本的cudn和cudnn,然后再安装tensorflow-gpu: Build from source on Windows | TensorFlowtensorflow.google.cn/install/source_windows?hl=en#gpu 注:conda install报错的文章末尾,不同的conda版本安装的cudatoolkit以及cudnn不同...
TensorFlow版本过低,CUDA版本过高 具体报错如下: (tensorflow-gpu) C:\Users\WW>python Python3.6.2|Continuum Analytics, Inc.| (default, Jul202017,12:30:02) [MSC v.190064bit (AMD64)] on win32 Type"help","copyright","credits"or"license"formore information.>>>import tensorflow ...
tensorflow_gpu-1.1.0 3.5 MSVC 2015 update 3 Cmake v3.6.3 5.1 8 tensorflow_gpu-1.0.0 3.5 MSVC 2015 update 3 Cmake v3.6.3 5.1 8 ——— 原文链接:TensorFlow各个GPU版本CUDA和cuDNN对应版本整理_JYliangliang的博客-CSDN博客_cuda10.1对应cudnn版本...
+cuda11.2 + cudnn8.1.0 + tensorflow=2.5.0,tensorflow-gpu=2.5.0(tf25虚拟环境,python3.7.3)+pytorch1.10.0(cu113) + torch-geometric(PYG100虚拟环境,python3.7.13,两个环境及两个环境的python版本不同都是为了防止两个深度学习库对numpy等库的要求不同所以用两个虚拟环境) 【Pytorch直接安装11.3版本的就...
搭建TensorFlow的GPU版本,必备条件是一块能够支持CUDA的NVIDIA显卡,首先需要安装其基础支持平台CUDA和其机器学习库cuDNN,然后在此基础上搭建对应TensorFlow GPU版本 TensorFlow1.2~2.1各GPU版本CUDA和cuDNN对应版本如下: tensorflow-gpu 的安装测试 Cuda 10.0, V10.0.130 首先 安装了: conda create -n tf21 python=3.7...