weight)output=torch.matmul(input,weight.t())returnoutput@staticmethoddefbackward(ctx,grad_output):# backward时候,进行all reduce操作input,weight=ctx.saved_tensorstp_group=get_tensor_parallel_group()grad_input=torch.matmul(grad_output
而今天偶然了解到了 tensor-parallel,这个库可以帮助我们很轻松地把模型训练与推理的 workload 平均分布到多块 GPU。一方面推理的速度上来了,另一方面 vram 的负载平衡也让复杂的 prompt 能被轻松处理。 话不多说,先上 demo! 首先import 相关的 libs: # torch version 2.0.0 import torch # tensor-parallel vers...
详解MegatronLM Tensor模型并行训练(Tensor Parallel)的主要内容如下:背景介绍:Megatron-LM于2020年发布,专门针对十亿参数级别的语言模型进行训练,如具有38亿参数的类GPT-2的transformer模型和39亿参数的BERT模型。模型并行训练有层间并行(inter-layer)和层内并行(intra-layer)两种方式,分别对应模型的竖切...
core.tensor_parallel.split_tensor_along_last_dim(tensor:torch.Tensor,num_partitions:int,contiguous_split_chunks:bool=False)→ List[torch.Tensor] Split a tensor along its last dimension. Parameters tensor– input tensor. num_partitions– number of partitions to split the tensor ...
当tensor_parallel_size=2被使用时,输出结果为:
当tensor_parallel_size=2被使用时,输出结果为:
tensor_parallel.common import tensor_parallel_sharding utils.check_type(thunder_module, ThunderModule) @@ -240,48 +240,14 @@ def forward(self, tokens: torch.Tensor) -> torch.Tensor: utils.check_type(device, torch.device) utils.check(device.index == rank, lambda: f"{device.index=} ...
Your current environment vllm version: '0.5.0.post1' 🐛 Describe the bug When I set tensor_parallel_size=1, it works well. But, if I set tensor_parallel_size>1, below error occurs: RuntimeError: Cannot re-initialize CUDA in forked subproc...
{ "tensor_parallel_degree": 8, "random_seed": 0 } In your training script Initialize with torch.sagemaker.init() to activate SMP v2 and wrap your model with the torch.sagemaker.transform API. import torch.sagemaker as tsm tsm.init() from transformers import AutoModelForCausalLM model = Au...
tensor model parallel group is already initialized "tensor model parallel group is already initialized" 这句话是关于TensorFlow的模型并行化(model parallelism)的一种警告信息。在模型并行化中,模型的不同部分可以在不同的设备(例如,不同的GPU)上运行。为了实现这一点,TensorFlow需要初始化一个"model parallel ...