【网络宽度、网络层数】越复杂的函数就需要越大容量的神经网络去拟合。在需要训练1e6步的任务中,我一般选择 宽度128、256,层数小于8的网络(请注意,乘以一个w算一层,一层LSTM等于2层)。使用ResNet等结构会有很小的提升。一般选择一个略微冗余的网络容量即可,把调整超参数的精力用在这上面不划算,我建议这些超参...
基于MDP的构建, 提出LSTM-TD3任务卸载算法, 利用LSTM对TD3的Actor-Critic网络进行改进. 网络框架如图3所示. LSTM-TD3算法具体流程如算法1. 图3 LSTM-TD3算法的网络框架 (4)实验结果及分析 图4对AC网络的学习率进行了比较分析, 从图4可以看出, 在合理的...
【网络宽度、网络层数】越复杂的函数就需要越大容量的神经网络去拟合。在需要训练1e6步的任务中,我一般选择 宽度128、256,层数小于8的网络(请注意,乘以一个w算一层,一层LSTM等于2层)。使用ResNet等结构会有很小的提升。一般选择一个略微冗余的网络容量即可,把调整超参数的精力用在这上面不划算,我建议这些超参...
【网络宽度、网络层数】越复杂的函数就需要越大容量的神经网络去拟合。在需要训练1e6步的任务中,我一般选择 宽度128、256,层数小于8的网络(请注意,乘以一个w算一层,一层LSTM等于2层)。使用ResNet等结构会有很小的提升。一般选择一个略微冗余的网络容量即可,把调整超参数的精力用在这上面不划算,我建议这些超参...
共识是强化学习不需要过深的网络,因为多数算法是基于在线学习方式的,过深的网络反而会造成学习难度过大、与环境变化难以契合。一般情况下,宽度选择 128、256,而不要超过 10 层(一些程序员表示 2~3 层足够,普遍表示不要超过 8 层),在进行层的计算时以 weight 为基准,因此 LSTM 视作 2 层。
在需要训练1e6步的任务中,我一般选择 宽度128、256,层数小于8的网络(请注意,乘以一个w算一层,一层LSTM等于2层,详见曾伊言:LSTM入门例子)。使用ResNet等结构会有很小的提升。一般选择一个略微冗余的网络容量即可,把调整超参数的精力用在这上面不划算,我建议这些超参数都粗略地选择2的N次方,因为: 防止过度调参...
在需要训练1e6步的任务中,我一般选择 宽度128、256,层数小于8的网络(请注意,乘以一个w算一层,一层LSTM等于2层)。使用ResNet等结构会有很小的提升。一般选择一个略微冗余的网络容量即可,把调整超参数的精力用在这上面不划算,我建议这些超参数都粗略地选择2的N次方,...
在Gym官方的Leaderboard上,有人用A3C+LSTM算法,在32核CPU和3个GPU上训练了73小时后最终解决了该问题,还有人使用CMA-ES算法在64核的Google Compute Engine上训练了100小时才最终解决了该问题,可见该环境的难度不一般。 一开始笔者用各种算法来攻克这个环境时也是没有得到很好的结果,最终通过一些trick,才最终通关了...
在需要训练1e6步的任务中,我一般选择 宽度128、256,层数小于8的网络(请注意,乘以一个w算一层,一层LSTM等于2层)。使用ResNet等结构会有很小的提升。一般选择一个略微冗余的网络容量即可,把调整超参数的精力用在这上面不划算,我建议这些超参数都粗略地选择2的N次方,...
在需要训练1e6步的任务中,我一般选择 宽度128、256,层数小于8的网络(请注意,乘以一个w算一层,一层LSTM等于2层)。使用ResNet等结构会有很小的提升。一般选择一个略微冗余的网络容量即可,把调整超参数的精力用在这上面不划算,我建议这些超参数都粗略地选择2的N次方,...