一.论文简介 来源:COLING2016 题目:《Effective lstms for target-dependent sentiment classification》 原文链接:aclweb.org/anthology/C1 参考代码:jimmyyfeng/TD-LSTM 文章针对target-dependent情感分析任务,在LSTM模型的基础上提出了两种改进的模型,分别是TC-LSTM与TD-LSTM。针对target-dependent情感分析任务,由于...
作者使用两个LSTM,一个从前到后输入左侧文本+target,另一个从后到前输入右侧文本+target。然后,作者将两个LSTM最后一个时间步的隐态向量拼接起来,送入softmax进行分类。 对于两个LSTM的最后一个隐态向量,也可以尝试将它们取平均或者相加。 2.3 Target-Connection LSTM(TC-LSTM) TD-LSTM不能很好地捕捉到target和上...
前向模型预测返回值,而后向模型分析确认导致返回值的状态和动作。我们使用长短期记忆网络(LSTM)来预测一个 episode 的返回值。LSTM 已经在强化学习中的优势学习(advantage learning)[4] 和学习策略 [37,70,38] 中得到了应用。然而,通过「模型中的反向传播」进行的敏感度分析 [75,87,88,5] 有严重的缺陷:局部极...
绿色框为检测结果,黄色框为真值。 论文:Temporal Dynamic Graph LSTM for Action-driven Video Object Detection 论文链接:https://arxiv.org/abs/1708.00666 摘要:在本论文中,我们探讨了弱监督目标检测框架。大多数现有框架着重于使用静态图来学习目标检测器,但由于域转移,这些检测器通常无法泛化至视频。因此,我们尝试...
在图像识别任务中,模型的训练一直非常依赖于标注数据,同时训练结果难以泛化。中国香港科技大学与卡耐基梅隆大学的研究者们最近发表的研究提出时间动态图 TD-Graph LSTM 试图解决这些问题,他们的新方法也刷新了视频目标检测的业内最佳水平。该论文已入选即将在 10 月底举行的 ICCV2017 大会。
LSTM 已经在强化学习中的优势学习(advantage learning)[4] 和学习策略 [37,70,38] 中得到了应用。然而,通过「模型中的反向传播」进行的敏感度分析 [75,87,88,5] 有严重的缺陷:局部极小值、不稳定性、世界模型中的梯度爆炸或消失问题、恰当的探索、动作仅通过敏感度进行分析而不是基于它们的贡献(相关性)[40...
TC-LSTM与TD-LSTM模型的区别是在TC-LSTM中,每个位置的输入是单词嵌入和目标向量v_target的连接。TC-LSTM可以更好地利用目标词和上下文词之间的联系来构建句子的表征。 图7 目标连接长短期记忆(TC-LSTM)模型用于目标依赖的情感分类,其中w代表长度为n的句子中的词,{w_l+1, w_l+2, ..., w_r-1}是目标词...
LSTM 已经在强化学习中的优势学习(advantage learning)[4] 和学习策略 [37,70,38] 中得到了应用。然而,通过「模型中的反向传播」进行的敏感度分析 [75,87,88,5] 有严重的缺陷:局部极小值、不稳定性、世界模型中的梯度爆炸或消失问题、恰当的探索、动作仅通过敏感度进行分析而不是基于它们的贡献(相关性)[40...
CNN和LSTM模型都可以用于句子编码。两种模型可以将非固定长度的句子表示成定长的向量,且不需依赖依存句法分析或者成分句法分析就能保留句子的词序等信息。作者在本文中使用CNN with multiple conventional filters of different widths的方式实现句子编码。作者在文章中分别使用宽度为1,2,3的卷积核去获取unigrams,bigrams和...
在需要训练1e6步的任务中,我一般选择 宽度128、256,层数小于8的网络(请注意,乘以一个w算一层,一层LSTM等于2层)。使用ResNet等结构会有很小的提升。一般选择一个略微冗余的网络容量即可,把调整超参数的精力用在这上面不划算,我建议这些超参数都粗略地选择2的N次方,...