tanx泰勒展开式是什么? 相关知识点: 试题来源: 解析 tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+...(|x|<π/2)。tan x=-|||-(-1)"-122n(22" -1)B2n-|||-tanx=∑_(n=1)^∞((-1)^(n-1)2^(2n)(2^n-...
tanx泰勒展开公式 tanx的泰勒展开式:tanx=x+x^3/3+(2x^5)/15+(17 x^7)/315+(62 x^9)/2835+O[x]^11(|x|<π/2)。 泰勒公式为一个用函数在某点的信息描述其附近取值的公式。它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有...
解析 tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835++[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+.(|x|<π/2).其中B( 结果一 题目 tanx的泰勒展开 答案 tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835++[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+...
答案解析 查看更多优质解析 解答一 举报 tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835++[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+.(|x|<π/2).其中B( 解析看不懂?免费查看同类题视频解析查看解答 相似问题 求tanx泰勒展开式 求证明tanx泰勒展开式的过程 tanx用泰勒公式展开是...
将导数值代入泰勒展开式得: tanx = 0 + 1(x) + (0/2!)(x)^2 + (2/3!)(x)^3 + ... = x + (2/3)x^3 + O(x^5) 其中O(x^5) 表示高阶无穷小。 注意事项: 以上泰勒展开式仅在 |x| < π/2 时成立,因为 tanx 在 x = π/2 或 -π/2 处不可导。
tanx泰勒级数展开 tan(x)(正切函数)的泰勒级数展开如下: tan(x) = x + (x^3)/3 + (2x^5)/15 + (17x^7)/315 + ... 这是tan(x)的Maclaurin级数展开,其中x是弧度制的角度。泰勒级数展开的一般形式为: f(x) = f(a) + f'(a)(x - a) + (f''(a)/2!)(x - a)^2 + (f'''(a...
tanx的泰勒展开式: tanx=x+x^3/3+(2 x^5)/15+(17 x^7)/315+(62 x^9)/2835+O[x]^11(|x|<π/2)。 常用泰勒展开式 1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+。 2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k + ……(|x|<1)。 3、sin x = ...
tanx的泰勒展开式:tanx=x+x^3/3+(2x^5)/15+(17 x^7)/315+(62 x^9)/2835+O[x]^11(|x|<π/2)。 泰勒公式为一个用函数在某点的信息描述其附近取值的公式。它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。 泰勒公式...
tanx的泰勒展开式:tanx=x+x^3/3+(2 x^5)/15+(17 x^7)/315+(62 x^9)/2835+O[x]^11(|x|<π/2)。常用泰勒展开式 1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+。2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k + ……(|x|<1)。3、sin ...
tanx的泰勒展开是:tanx = x + x^3/3 + 2x^5/15 + ...,与sinx不相同。泰勒展开是一种用多项式逼近函数的方法。对于tanx和sinx这两个函数,它们的泰勒展开式是不同的。这是因为它们的函数性质和导数不同。具体来说:tanx的泰勒展开式:tanx的泰勒展开是在x=0处展开的,其展开式为tanx = x...