T 分布随机近邻嵌入算法(t-SNE) Jake Hoare 的博客并没有详细解释 t-SNE 的具体原理和推导过程,因此下面我们将基于 Geoffrey Hinton 在 2008 年提出的论文和 liam schoneveld 的推导与实现详细介绍 t-SNE 算法。如果读者对这一章节不感兴趣,也可以直接阅读下一章节 Jake Hoare 在实践中使用 t-SNE 进行数据可视化。
可以看到,t-SNE 很好地将三类鸢尾花样本区分开来。 然而,sklearn 的 t-SNE 实现在计算效率上还有提升空间。 这时,OpenTSNE 库就派上用场了。OpenTSNE 对 t-SNE 算法做了诸多优化,如 Barnes-Hut 近似方法,并用 C++ 重写了关键步骤,这使得 OpenTSNE 在运行速度上大幅领先于 sklearn。 使用OpenTSNE 进行降维和...
T 分布随机近邻嵌入算法(t-SNE) Jake Hoare 的博客并没有详细解释 t-SNE 的具体原理和推导过程,因此下面我们将基于 Geoffrey Hinton 在 2008 年提出的论文和 liam schoneveld 的推导与实现详细介绍 t-SNE 算法。如果读者对这一章节不感兴趣,也可以直接阅读下一章节 Jake Hoare 在实践中使用 t-SNE 进行数据可视化。
CURE算法详解 CURE算法详解 第二十九次写博客,本人数学基础不是太好,如果有幸能得到读者指正,感激不尽,希望能借此机会向大家学习。这一篇作为可伸缩聚类(Scalable Clustering)算法的第二篇,主要是对CURE(Clustering Using Representative)算法进行详细介绍,其他可伸缩聚类算法的链接可以从《可伸缩聚类算法综述(可伸缩聚类...
t-SNE 算法对每个数据点近邻的分布进行建模,其中近邻是指相互靠近数据点的集合。在原始高维空间中,我们将高维空间建模为高斯分布,而在二维输出空间中,我们可以将其建模为 t 分布。该过程的目标是找到将高维空间映射到二维空间的变换,并且最小化所有点在这两个分布之间的差距。与高斯分布相比 t 分布有较长的尾部,...
t-SNE 算法对每个数据点近邻的分布进行建模,其中近邻是指相互靠近数据点的集合。在原始高维空间中,我们将高维空间建模为高斯分布,而在二维输出空间中,我们可以将其建模为 t 分布。该过程的目标是找到将高维空间映射到二维空间的变换,并且最小化所有点在这两个分布之间的差距。与高斯分布相比 t 分布有较长的尾部,...
t-SNE 由 Laurens van der Maaten 和 Geoffrey Hinton 在 2008 年提出,特别适合将高维数据降维并可视化。与 PCA 等线性降维方法不同,t-SNE 是一种非线性降维算法。 它的核心思想是:在高维空间和低维空间中,都使用条件概率来表示数据点之间的相似性,然后最小化两个条件概率分布之间的 KL 散度,从而找到最优的...
t-SNE 算法对每个数据点近邻的分布进行建模,其中近邻是指相互靠近数据点的集合。在原始高维空间中,我们将高维空间建模为高斯分布,而在二维输出空间中,我们可以将其建模为 t 分布。该过程的目标是找到将高维空间映射到二维空间的变换,并且最小化所有点在这两个分布之间的差距。与高斯分布相比 t 分布有较长的尾部,...
t-SNE 算法对每个数据点近邻的分布进行建模,其中近邻是指相互靠近数据点的集合。在原始高维空间中,我们将高维空间建模为高斯分布,而在二维输出空间中,我们可以将其建模为 t 分布。该过程的目标是找到将高维空间映射到二维空间的变换,并且最小化所有点在这两个分布之间的差距。与高斯分布相比 t 分布有较长的尾部,...