一、从CNNs迈向Transformer 二、Swin Transformer 1. 基于移动窗口的自注意力模块 2. 网络架构和实验结果 三、Swin Transformer 图像分类应用 配置超参数 准备数据 帮助程序函数 基于窗口的多头自注意力 完整的 Swin Transformer 模型 模型训练和评估 准备tf.data.Dataset 构建模型 CIFAR-100 训练 将Transformer引入视觉...
上一篇文章(网络架构设计:CNN based和Transformer based)讨论了一下网络架构设计是以CNN为主好还是Transformer为主好的问题,Swin Transformer给出了答案。Swin Transformer 吸收了CNN的locality、translation invariance和hierarchical等优点,形成了对CNN的降维打击。 Swin Transformer改进思路还是源于CNN,Transformer站在巨人的肩...
SwinT模块,让Swin-Transformer 的使用变得和CNN一样方便快捷! 项目内容 一、SwinT模块的使用演示,接口酷似Conv2D 由于以下两点原因,我们将Swin-Transformer最核心的部分制成了一个类似于nn.Conv2D的接口并命名为SwinT。其输入、输出数据形状完全和Conv2D(CNN)一样,这极大的方便了使用Transformer来编写模型代码。 1、一...
这里介绍的ConvNeXt就是CNN的一个很好的反击,它在保持CNN结构的基础之上,通过“抄袭”Swin Transformer...
DETR是一种检测框架,它使用Transformer隐式地执行区域proposal和目标定位,而不使用R-CNN。DETR和BoTNet都使用自注意来提高目标检测和实例(或全景)分割的性能。 不同之处在于,DETR在主干网络之外使用Transformer块,其motivation是去掉区域proposal和非极大值抑制以实现更简单的目标检测。BoTNet的目标是提供一个主干网络,因此...
提出的 iTransformer 将独立时间序列视为 token,通过自注意力捕捉多变量相关性,并利用层归一化和前馈...
放一些实验结果,感受一下Swin Transformer对之前SOTA的降维打击。 图像分类碾压: 目标检测碾压: 语义分割碾压: 4 总结 网络架构设计是以CNN为主好还是Transformer为主好的问题,Swin Transformer给出了答案。Swin Transformer 吸收了CNN的locality、translation invariance和hierarchical等优点,形成了对CNN的降维打击。
因此,Swin Transformer借鉴了CNN的很多设计理念以及其先验知识:小窗口内算自注意力(认为同一个物体会出现在相邻的地方,因此小窗口算自注意力其实是够用的,而全局自注意力实际上有一些浪费资源)。CNN之所以能抓住多尺度的特征是因为池化这个操作(能增大每一个卷积核的感受野),因此Swin Transformer也提出了一个类似池化...
其实Swin Transformer的很多思想和CNN有异曲同工之处,它利用了视觉信号的好的先验,它的网络架构中也采用了层次化(hierarchy)、局部化(locality)、平移不变性(translation invariance)。我们知道CNN可以进行多尺度,层级化的特征提取,主要代表为YOLOV3的FPN网络。在Swin Transformer中,我们也可以看到不同的下采样尺度,它的...
CNN hierarchical features 作者希望Transformer也具有这种能力,一种方法就是调整patch大小,可以将patch size理解为感受野(receptive field),底层的patch比较小,只能捕捉到最局部的特征,比如眼睛,而高层的patch比较大,可以捕捉到更大范围的特征,比如人脸,这样,不同层的输出就可以构成hierarchical feature map。 如何调整patch...