This enables them to prove the existence of a solution to the corresponding nonlinear problem.doi:10.1006/jdeq.1998.3611Wolfgang ReichelWolfgang WalterElsevier BVJournal of Differential EquationsReichel W, Walte
B INDING , P. J. B ROWNE , Left definite Sturm-Liouville problems with eigenparameter dependentboundary conditions, Differential Integral Equations 12 (1999), 167–182.[5] P. B INDING , P. D R ´ ABEK , Sturm-Liouville theory for the p-Laplacian, Studia Scientiarum Math. Hun-garica ...
一类带p-Laplacian的Sturm-Liouville型2m点边值问题三个正解的存在性
for all (x,η)∈[0,π]×R (thus the nonlinearity in (1) is superlinear as u(x)→∞, but linearly bounded as u(x)→−∞). We obtain solutions of (1)–(2) having specified nodal properties. Introduction We consider the nonlinear Sturm–Liouville problem−(p(x)u′(x))′+q(x...
A. Zettl Sturm–Liouville Theory Math. Surveys Monogr., vol. 121, Amer. Math. Soc., Providence, RI (2005) Google Scholar [19] M. Zhang The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials J. London Math. Soc. (2), 64 (2001), pp. ...
正解P-Laplacian方程本文讨论如下P-Laplacian方程{-(h(t)|u')t)|p-2u'(t))'+q(t)|u(t)|p-2u(t)=f(t,u)),t∈(0,1) u(0)=u(1)=0 奇异边值问题的正解存在性,其中p〉1,h(t)∈C1[O,1],q(t)∈c[0,1],h(t)〉0,q(t)≥0,函数f(t,x)可能在t=0,1时都有奇性。熊明大理...
,m-1.通过运用锥上的不动点定理,该文得到了至少三个正解的存在性.有趣的是文中的边界条件是一个新型的Sturm-Liouville型边界条件,这类边值问题到目前为止还很少被研究.赵俊芳葛渭高数学物理学报赵俊芳,葛渭高. 一类带p-Laplacian的Sturm-Liouville型2m点边值问题三个正解的存在性[J]. 数学物理学报. 2011(01)...
本文运用迭代法研究了带p-(Laplacian算子的四阶Sturm-Liouville边值问题{φp(u″(t)))″+q(t)f(t,u(t),u″(t))=0,t∈(0,1),{αu(0)-βu'(0)=,γu(1)+δu'(1)=0,u″(0)=0,u?(0)=0正解的存在性,其中φ_p(s)=∣s∣~(p-2)s,p〉1;f:[0,1]×[0,+∞)×R→[0,+∞...
Binding P, Browne PJ, Karabash IM. Sturm-Liouville prob- lems for the p-Laplacian on a half-line. Proc Edinb Math Soc. 2010;53(2):271-291.P. Binding, P.J. Browne and I.M. Karabash, Sturm-Liouville problems for the p-Laplacian on a half- line, Proc. Edinburgh Math. Soc., ...
We prove that if the Neumann eigenvalues of the impulsive Sturm–Liouville operator -D2+q{-D^{2}+q} in L2(0,π){L^{2}(0,\pi)} coincide with those of the Neumann Laplacian, then q=0{q=0}.