虽然我们使用的CubeMx来配置DMA,但只是配置DMA模式为串口到内存,所以还需要在程序中进一步指定:DMA具体搬运到内存的哪一个位置中,我们建立一个数组用以存放DMA搬运的串口数据,并使用HAL_UART_Receive_DMA()函数来配置,具体代码如下所示: File main.c : ... ...uint8_treceive_buff[255];//定义接收数组... ...
__IO HAL_UART_RxTypeTypeDef ReceptionType; // 接收类型 DMA_HandleTypeDef *hdmatx; // 指向串口...
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) 1. 串口空闲中断(IDLE): 当DMA串口接收开始后,DMA通道会不断的将发送来的数据转移到主存,那么问题来了,该如何判断串口接收是否完成从而及时关闭DMA通道?如何知道接收到数据的长度?答案便是使用串口空闲中断。
从外设(TIMx[x=1、2、3、4]、ADC1、SPI1、SPI/I2S2、I2Cx[x=1、2]和USARTx[x=1、2、3])产生的7个DMA请求,通过逻辑或输入到DMA1控制器 其中每个通道都对应着具体的外设: ② DMA2 controller 从外设(TIMx[5、6、7、8]、ADC3、SPI/I2S3、UART4、DAC通道1、2和SDIO)产生的5个请求,经逻辑或输入...
接收时,可以调用HAL_UART_Receive_DMA函数,如下图: 这里我们可以在断点停止时,用串口调试助手发送20个字节数据,当再次运行时,可以看到rx_data里的数据发生了变化,说明DMA在CPU未运行时也在收数据。 另外,还可以看到,因为设置了循环收16个字节,但是发送了20个字节,所以16个字节之后的4个字节又覆盖了头4个字节: ...
STM32的HAL库开发系列 - 串口DMA接收 串口DMA接收函数: HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart,uint8_t *pData,uint16_t Size) 串口空闲中断(IDLE): 当DMA串口接收开始后,DMA通道会不断的将发送来的数据转移到主存,那么问题来了,该如何判断串口接收是否完成从而及时关闭DMA通道?如何...
HAL_UART_IDLE_Handler(&huart1); 1. 在中断之中去操作UART的DMA,先是将DMA中的数据读出,再重置UART的DMA,用于下一帧数据的接收 void HAL_UART_IDLE_Handler(UART_HandleTypeDef* uartHandle) { if(uartHandle->Instance == USART1) { if(__HAL_UART_GET_FLAG(uartHandle, UART_FLAG_IDLE) != RESET)...
使用HAL_UARTEx_ReceiveToIdle_DMA() 总结 附赠,伪代码实现 串口接收有以下几个难点:数据来的长度不固定,数据来的时间不固定,数据解析要快。 如何收? 前两个难点都是收要去做的事情。收用DMA做是最好不过了,Peripheral To Memory专门就是用来做这种事情。有疑问的可以比较下轮询、中断、DMA之间的区别,以及重点...
在STM32微控制器中,开启串口DMA接收空闲中断可以通过以下步骤实现:配置串口的DMA接收模式。使用HAL_UART_Receive_DMA()函数将串口的接收操作转移到DMA进行。在NVIC中使能相应的DMA通道中断。使用H
6、在main()函数中,添加开启串口空闲中断、打开串口DMA接收及接收到数据之后的操作。 /** * @brief The application entry point. * @retval int */ int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_DMA_Init(); MX_USART1_UART_Init(); __HAL_UART_ENABLE_IT(&huart...