答案是:不需要。GC Allocator对于改善小内存分配是有益的。但是在动态的线性内存的数据结构无效。这样的数据结构除了 std::vector 外,典型的还有std::string(std::basic_string)。 std::deque- 介于 std::vector 与 std::list 之间的一个数据结构,既可以随机定位,海量数据是性能仍然非常稳健(事实上其 push_back...
这里仅是利用std::allocator来实现简单的自定义vector类,如有问题欢迎指正。 1#include <iostream>2#include <memory>3usingstd::cout;4usingstd::endl;56template <typename Tp>7classVector8{9public:10Vector()11: _elems(NULL)12, _first_free(NULL)13, _end(NULL)14{}1516~Vector()17{18if(_elems)1...
若new_cap>max_size()则为std::length_error。 任何Allocator::allocate()所抛的异常(典型为std::bad_alloc) 若抛出异常,则此函数无效果(强异常保证)。 若T的移动构造函数不是noexcept且 T 非可复制插入(CopyInsertable)到*this,则 vector 将使用移动构造函数。若它抛出,则摒弃保证,且效果未指定。
任何Allocator::allocate()会抛出的异常(典型为std::bad_alloc)。 如果抛出异常,那么此函数无效果(强异常保证)。 如果T的移动构造函数不是noexcept的且T非可复制插入(CopyInsertable)到*this,那么vector将使用移动构造函数。如果它抛出异常,那么摒弃保证,且效果未指定。
答案是:不需要。GC Allocator对于改善小内存分配是有益的。但是在动态的线性内存的数据结构无效。这样的数据结构除了 std::vector 外,典型的还有std::string(std::basic_string)。
而std::allocator继承于__gnu_cxx::new_allocator,它的构造函数为 81new_allocator(constnew_allocator&)_GLIBCXX_USE_NOEXCEPT{} 也就是说_Vector_impl只是初始化了start, finish, end_of_storage三个成员变量,__a则是完全无用的。 第二部分 分配空间 ...
若抛出异常(可能因为Allocator::allocate()或元素复制/移动构造函数/赋值),则此函数无效果(强异常保证)。 若T的移动构造函数不是noexcept且 T 不可复制插入(CopyInsertable)到*this,则 vector 将使用会抛出的移动构造函数。若它抛出,则抛弃保证且效果未指定。(C++11 起) ...
任何Allocator::allocate() 所抛的异常(典型为 std::bad_alloc) 若抛出异常,则此函数无效果(强异常保证)。 若T 的移动构造函数不是 noexcept 且 T 非可复制插入 (CopyInsertable) 到*this ,则 vector 将使用移动构造函数。若它抛出,则摒弃保证,且效果未指定。 (C++11 起) ...
如果std::allocator_traits<allocator_type>::propagate_on_container_swap::value 是true,那么就会用对非成员 swap 的无限定调用进行分配器的交换。否则,不交换它们(且在 get_allocator() != other.get_allocator() 时行为未定义)。 (C++11 起)参数...
通过std::allocator_traits::construct 构造元素,常用布置 new 在容器提供的位置原位构造元素。然而若要求的位置已被既存的元素占据,则首先在另一位置构造被插入的元素,然后再将他移动赋值到要求的位置中。 将参数 args... 作为std::forward<Args>(args)... 转发给构造函数。 args... 可以直接或间接地指代容器...