ControlNet 作者:张吕敏,他是2021年本科毕业,目前正在斯坦福读博的中国人,为我们这位年轻同胞点赞。ControlNet 是作者提出的一个新的神经网络概念,就是通过额外的输入来控制预训练的大模型,比如 stable diffusion。这个本质其实就是端对端的训练,早在2017年就有类似的AI模型出现,只不过这一次因为加入了 SD 这样优质...
1.Canny 可以根据你提供的图片经过预处理器成为线稿,然后经过canny controlnet模型控制图像扩散,可以调节权重和引导时机控制线稿的比重,适用场景偏需要提取人物,汽车,动物等线稿进行重绘 2.depth 深度controlnet主要用于凸显图像的前景背景和空间关系,前景的比重大,背景浅(提示词加上空间等),在使用场景适用于对空间纵深有...
ControlNet 的作用是通过添加额外控制条件,来引导 Stable Diffusion 按照创作者的创作思路生成图像,从而提升 AI 图像生成的可控性和精度。在使用 ControlNet 前,需要确保已经正确安装 Stable Diffusion 和 ControlNet 插件。目前 ControlNet 已经更新到 1.1 版本,相较于 1.0 版本,ControlNet1.1 新增了更多的预...
比如建筑,街区,相框等,可以用于室内设计,比如提供这样的参考图:输入:award winning living room可以生成下面的目标图像:Stable Diffusion 部署与使用ControlNet接下来,简单过一遍,如何部署和使用Stable Diffusion ControlNet。
ControlNet 是一种用于控制稳定扩散的神经网络结构模型,用于通过添加额外条件来控制扩散模型。 它可以获取额外的输入图像,通过不同的预处理器转换为控制图,进而作为 Stable Diffusion 扩散的额外条件,引导扩散过程,获得更稳定的扩散结果。 ControlNet接受Input(提示词,原始噪声图等信息)以及Condition(控制图像)进行加工处理...
超简单,stable diffusion 使用controlNet插件实现动作扑 使用controlNet插件实现动作扑捉教程 1.作用:可以让其能百分百准确的画出想要的图片 00:10作用 2.文件下载:将文件拖到扩展文件extensions中 01:27文件下载 3.使用原理:在已有图片上生成最新照片 04:39使用原理...
在上一篇文章中,写了stable diffusion的扩散原理,其中讲到noise predictor可以将将text prompt和depth map作为条件控制来生成图片。而depth map是controlNet根据我们输入的图片生成的。 我在刚学习stable diffusion的时候,我以为controlNet就是U-Net(noise predictor),在后面的学习中才明白这是两码事,那么controlNet到底是...
ControlNet是斯坦福大学研究人员开发的Stable Diffusion的扩展,使创作者能够轻松地控制AI图像和视频中的对象。它将根据边缘检测、草图处理或人体姿势等各种条件来控制图像生成。ControlNet可以概括为一种简单的稳定扩散微调方法。安装插件 在Stable Diffusion WebUI,可以通过下面的标签使用:如果你没有看到这个标签,可以在...
ControlNet 是一种通过添加额外条件来控制Stable Diffusion模型的神经网络结构。它提供了一种在文本到图像生成过程中通过条件输入(例如 涂鸦、边缘图、分割图、姿势关键点 等)增强 Stable Diffusion 的方法。因此,生成的图像将更加接近 ControlNet 中的输入图像的要求,这比图像到图像生成等传统方法有很大改进。
一、ControlNet 扩展安装 进入Stable Diffusion 界面,点击扩展标签,选择从 URL 安装,然后输入 ControlNet 网址(https://github.com/Mikubill/sd-webui-controlnet),粘贴到对应的地方,然后点击安装。 完成之后,点击已安装标签,将刚刚安装的扩展选项打钩,随后点应用并重启UI按钮。