ssGSEA算法原理解析 ssGSEA顾名思义是一种特殊的GSEA,它主要针对单样本无法做GSEA而提出的一种实现方法,原理上与GSEA是类似的,不同的是GSEA需要准备表达谱文件即gct,根据表达谱文件计算每个基因的rank值,再进行后续的统计分析。 而单个样本则无法计算rank,当然GSEA也支持你直接提供rank来进行富集分析的,这个不在此讨...
1.single sample GSEA 是通过扩展GESA扩展实现的,ssGSEA允许定义一个富集分数,该分数表示给定数据集内每个样本中基因集的绝对富集程度。 2.对给定样本的基因表达值进行排序归一化,并使用签名中的基因和其余基因的经验累积分布函数(ECDF)生成富集分数。 3.ssGSEA过程类似于GSEA,但是在ssGSEA列表是根据absolute expression...
另外,后面大家会知道,GSEA、ssGSEA、GSVA三者的不在基因集S中的其他基因的eCDF上升高度是相同的。 第三, ES(S)的计算方式不同。计算两条eCDF在每个基因处的D后,在GSEA中,ES(S)等于绝对值最大的D;而在ssGSEA中,ES(S)等于所有D的加和(积分)。 最后,对ssGSEA的计算细节感兴趣...
ssGSEA算法原理解析 ssGSEA顾名思义是一种特殊的GSEA,它主要针对单样本无法做GSEA而提出的一种实现方法,原理上与GSEA是类似的,不同的是GSEA需要准备表达谱文件即gct,根据表达谱文件计算每个基因的rank值,再进... ssGSEA顾名思义是一种特殊的GSEA,它主要针对单样本无法做GSEA而提出的一种实现方法,原理上与GSEA是...