K均值聚类是现在比较常用的聚类算法之一,接下来分别对该方法的原理和操作进行简单的说明,帮助大家更好的理解聚类分析的过程。 (1)基本说明 K均值聚类也称K-means聚类,是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此...
点击“确定”运行层次聚类分析,SPSS将输出聚类结果和树状图。3. K均值聚类分析步骤 K均值聚类适合大样本分析,以下是具体操作步骤:选择分析工具:点击 分析(Analyze) → 分类(Classify) → K均值聚类(K-Means Cluster)。选择变量:将用于聚类的变量拖入 变量(Variable(s)) 框中。设置聚类数量:在“数量(N...
首先,使用 K-Means 模型进行聚类分析。选择工作区的“类型”,在窗口底部“建模”选项卡中,找到“K-Means”模型,并双击。在工作区中,即得到一个 K-Means 模型节点,如图 1-9 所示 图9 工作区中的“K-Means”模型 (6) 编辑 K-Means 节点。右键单击工作区的“K-Means”,选择“编辑”,打开如图 10 的“K-...
根据居住地距离 ,我们使用kmean聚类将样本分成2个类别,并保存结果到小区变量中。 结果如图所示。 聚类中心结果如下 每个样本的聚类信息: 分析不同小区居民的平均出行距离、平均家庭收入、年龄分布、性别分布、家庭人口数和受教育程度有什么区别吗? 从均值比较的结果来来看,第1个类别的工作里小区工作距离较短,第三个...
根据居住地距离 ,我们使用kmean聚类将样本分成2个类别,并保存结果到小区变量中。 结果如图所示。 聚类中心结果如下 每个样本的聚类信息: 分析不同小区居民的平均出行距离、平均家庭收入、年龄分布、性别分布、家庭人口数和受教育程度有什么区别吗? 从均值比较的结果来来看,第1个类别的工作里小区工作距离较短,第三个...
对于聚类中心的SSE指标说明如下:在进行Kmeans聚类分析时SPSSAU默认输出误差平方和SSE值,该值可用于测量各点与中心点的距离情况,理论上是希望越小越好,而且如果同样的数据,聚类类别越多则SSE值会越小(但聚类类别过多则不便于分析)。SSE指标可用于辅助判断聚类类别个数,建议在不同聚类类别数量情况下记录下SSE值...
聚类分析(K-Means)是一种基于中心的无监督学习聚类算法(K 均值聚类),通过迭代,将样本分组成k个簇,使得每个样本与其所属类的中心或均值的距离之和最小。与分层聚类等按照字段进行聚类的算法不同的是,K-Means算法是按照样本进行聚类。 聚类分析的重要性主要体现在以下几个方面:首先,它可以帮助我们理解数据的分布和...
1. 打开数据,依次选择 分析-> 分类 -> K-均值聚类… 2. 将分类的关键变量选入,这里以PM2.5和O3的监测数据为例。 3. 单击 迭代…,将 最大迭代次数设置成一个将大的数值,单机 继续 4. 单击 保存…,勾选 聚类成员和与聚类中心的距离,单击 继续 ...
选择SPSS Modeler的Modeling-K-means,将K-Means模型节点添加进数据流来,双击K-Means图标,在弹出的对话框中选择Model选项页,选项页中的参数解释如下: 1)Numbers of cluster:制定生成的聚类数目,这里设置为3. 2)Use Partitioned Data:如果用户定义了分割数据集,选择训练数据集作为建模数据集,并利用测试数据集对模型进...
根据居住地距离 ,我们使用kmean聚类将样本分成2个类别,并保存结果到小区变量中。 结果如图所示。 聚类中心结果如下 每个样本的聚类信息: 分析不同小区居民的平均出行距离、平均家庭收入、年龄分布、性别分布、家庭人口数和受教育程度有什么区别吗? 1. 从均值比较的结果来来看,第1个类别的工作里小区工作距离较短,第...