Spatial Pyramid Pooling Fast (SPPF) 解析 1. 空间金字塔池化(Spatial Pyramid Pooling, SPP)的基本概念 空间金字塔池化(SPP)是一种网络层,主要用于解决卷积神经网络(CNN)中固定大小输入的限制。在标准的CNN中,网络的输入图像通常需要被调整到固定的尺寸,这可能导致信息的丢失或畸变。SPP层通过对不同区域进行池化操...
既然存在问题,那么就有解决方案。作者提出了SPP-net,spatial pyramid pooling的简称,中文翻译是:空间金字塔池化。SPP的主要目标是不管输入图像的大小或尺度,SPP都会生成一个固定长度的表示(representation)。 在Introduction部分,作者总结了SPP的三大非常好的特性,分别是: ① SPP不受输入image大小或尺度的限制,都会生成固定...
SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 首发地址 原文:SPPNet论文翻译 译者:邓范鑫 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作。SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加灵活,分析到卷积网络对尺寸并没有要求,...
我们可以看到这里的spatital pyramid pooling layer就是把前一卷积层的feature maps的每一个图片上进行了3个卷积操作。最右边的就是原图像,中间的是把图像分成大小是4的特征图,最右边的就是把图像分成大小是16的特征图。那么每一个feature map就会变成16+4+1=21个feature maps。我们即将从这21个块中,每个块提取...
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神经网络中的空间金字塔池 论文作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 论文地址:https://arxiv.org/pdf/1406.4729.pdf ...
LayerParameter pooling_param; int num_bins = pow(2, pyramid_level);//计算可以划分多少个刻度,最后我们图片块的个数就是num_bins*num_bins //计算垂直方向上可以划分多少个刻度,不足的用pad补齐。然后我们最后每个图片块的大小就是(kernel_w,kernel_h) ...
在整个图像上提取特征,然后在特征图上提取window,在window上进行Spatial Pyramid Pooling。这种方法只需要计算一次耗时的卷积过程,比R-CNN高效;OverFeat在检测时也是在特征图上采用offet pooling和sliding window 的方式,和本文的方法类似,但是OverFeat需要固定的window尺寸,但是spp结构则不需要固定大小的window。
小编是一个机器学习初学者,打算认真研究论文,但是英文水平有限,所以论文翻译中用到了Google,并自己逐句检查过,但还是会有显得晦涩的地方,如有语法/专业名词翻译错误,还请见谅,并欢迎及时指出。 前言 SPP-Net是出自2015年发表在IEEE上的论文-《Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recogniti...
通常在卷积神经网络CNN中主要是由卷积层(包括Convolution和Pooling两部分组成)和全连接层组成,对于任意一张大小的图片,通常需要通过裁剪或者拉伸变形的方式将其转换成固定大小的图片,这样会影响到对图片的识别。Kaiming He等人在2015年提出了Spatial Pyramid Pooling的