一、根据坐标col,以及值进行表示生成矩阵。 代码 >>> row=np.array([0,0,1,2,2,2]) >>> col=np.array([0,2,2,0,1,2]) >>> data=np.array([1,2,3,4,5,6]) >>>csr_matrix((data,(row,col)),shape=(3,3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])...
一、csr_matrix函数 from scipy.sparse import csr_matriximport numpy as np# data:代表的是稀疏矩阵中存储的所有元素data = np.array([1,2,3,4,5,6])# indices: 代表的是这6个元素所在的列的位置indices = np.array([0,2,2,0,1,2])# indptr: 游标,每一行起始元素的下标# 1 2|3|4 5 6的下...
csr_matrix 也是最常见的稀疏矩阵的存储方式了,deepwalk或者node2vec的speed up版本就是用csr matrix来存储图和处理图的,(不过很可惜numba不支持scipy.sparse的优化) 上图就很好理解了,我们首先是查询index pointers,也就是indptr,查询的时候需要进行迭代计算的,indptr的初始必然为0,表示start,然后: 2-0=2,表示第0...
scipy.sparse.csr_matrix.min函数用于计算压缩稀疏行矩阵(Compressed Sparse Row Matrix,CSR矩阵)中的最小值。默认情况下,该函数将考虑所有非零元素并计算最小值。然而,有时我们希望忽略掉隐式零(在CSR矩阵中表示为未显示存储的零值)。 要忽略隐式零,可以使用scipy.sparse.csr_matrix.min函数的参数min_val...
csr_matrix 代码语言:javascript 复制 >>>indptr=np.array([0,2,3,6])#0表示默认起始点,0之后有几个数字就表示有几行>>>indices=np.array([0,2,2,0,1,2])>>>data=np.array([1,2,3,4,5,6])>>>csr_matrix((data,indices,indptr),shape=(3,3)).toarray()array([[1,0,2],[0,0,3]...
sparse.csr_matrix("x_t",dtype=theano.config.floatX)\ )\ifP_inputisNoneelseP_input[:2]#elements of historyshape = kwargs.get("shape")ifshapeisnotNone: dict_size = shape[0]iflen(shape) <=1:delshape["shape"]else: shape["shape"] = shape["shape"][1:]else: ...
from scipy.sparse import csr_matrix # print(csr_matrix((3, 4), dtype=np.int8).toarray()) # 构建3*4的空矩阵 # [[0 0 0 0] # [0 0 0 0] # [0 0 0 0]] row = np.array([0, 0, 1, 2, 2, 2]) col = np.array([0, 2, 2, 0, 1, 2]) ...
fast matrix vector products Disadvantages of the CSR format slow column slicing operations (consider CSC) changes to the sparsity structure are expensive (consider LIL or DOK) 上述官方文档时稀疏矩阵的一些特性以及csr_matrix的优缺点,并且在指明各种缺点的同时,提供了可以考虑的技术实现。
CSR方法采取按行压缩的方式,使用三个数组表示原始矩阵。首先,数据元素存储在'data'数组中,表示每一行的非零数值。每行的索引则在'indptr'数组中体现,注意,每个值代表该行中的非零元素数量。以矩阵第一行为例,data[ indptr[0]: indptr[1] ],即data[0:2],包含数值1和2。接下来,我们需要...
>>> import numpy as np >>> from scipy.sparse import csr_matrix >>> csr_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8) >>> row = np.array([0, 0, 1, 2, 2, 2]) >>> col = np.array([0, 2...