softmax 损失函数只针对正确类别的对应的输出节点,将这个位置的softmax值最大化。 卷积神经网络系列之softmax,softmax loss和cross entropy的讲解 cross-entropy 交叉熵损失函数 简单的交叉熵损失函数,你真的懂了吗? cross-entropy 不是机器学习独有的概念,本质上是用来衡量两个概率分布的相似性的。 上式中,p代表...
convey unexpected supervisory signals on the training points, which make the learned features tend to spread over the space sparsely. 这件事的关键,就在于用了 softmax 这个操作. 这个操作让 loss 只关注 logits 的相对位置,不能直接监督表征的分布. 为了让模型更多地产生high-density regions, 本文提出了Ma...
理清了softmax loss,就可以来看看cross entropy了。 corss entropy是交叉熵的意思,它的公式如下: 是不是觉得和softmax loss的公式很像。当cross entropy的输入P是softmax的输出时,cross entropy等于softmax loss。Pj是输入的概率向量P的第j个值,所以如果你的概率是通过softmax公式得到的,那么cross entropy就是softm...
Softmax loss是交叉熵损失在softmax函数上的一种特殊形式。在多分类任务中,模型的最后一层通常使用soft...
softmax、cross entropy和softmax loss学习笔记 之前做手写数字识别时,接触到softmax网络,知道其是全连接层,但没有搞清楚它的实现方式,今天学习Alexnet网络,又接触到了softmax,果断仔细研究研究,有了softmax,损失函数自然不可少。一起学习记录一下。 主要参考的博文:http://blog.csdn.net/u014380165/article/...
就是我们前面说的 LogSoftmax。这玩意算起来比 softmax 好算,数值稳定还好一点,为啥不直接算他呢?所以说,这有了 PyTorch 里面的 torch.nn.CrossEntropyLoss (输入是我们前面讲的 logits,也就是 全连接直接出来的东西)。这个 CrossEntropyLoss 其实就是等于 torch.nn.LogSoftmax + torch.nn.NLLLoss。
其输出有c个值,不像二分类只有一个值,这c个值分别代表每个类别的预测概率,所以可以看到softmax最后的风险函数只有一个分支。最后的loss损失函数: 分析: 其公式本质应该是(对于一个样本): 但是,因为其利用了one-hot编码方式,在相乘的时候,只有真实标签对应的logs才会保留,所以可以简化为: ...
softmax函数用于将任意实数向量转换为概率值,确保结果之和为1且位于0-1之间。分类交叉熵损失衡量预测概率与实际标签间的差异,专用于多类分类任务。在多类分类问题中,每个样本只属于一个类。交叉熵接受两个离散概率分布作为输入,输出表示两个分布相似度的数值。该损失函数在多类分类任务中,利用softmax...
虽然直接计算cross-entropy可能会更快,且数值稳定性更好,但softmax和cross-entropy通常被整合在一起使用,例如在PyTorch中的torch.nn.CrossEntropyLoss函数,它将logsoftmax和NLLLoss整合在一起。这种组合方式在实现上更为简便,同时保持了较高的数值稳定性。
为什么随机初始化后softmax+cross entropy的loss为logC?(C为分类个数)因为是随机初始化,所以我们可以认为经过神经网络出来的大小都是差不多的,差不多...