Sn = a1 * (q^n -1)/(q-1)S2n = a1 * (q^2n -1)/(q-1)S<(k-1)n> = a1 * [q^(k-1)n -1]/(q-1)Skn = a1 * [q^(kn) -1]/(q-1)S<kn> - S<(k-1)n> =[a1/(q-1)]*[q^(kn) - q^(k-1)n]= [a1/(q-1)] * q^[(k-1)n] * (q^n -1...
Sn = a1 * (q^n -1)/(q-1) S2n = a1 * (q^2n -1)/(q-1) S = a1 * [q^(k-1)n -1]/(q-1) Skn = a1 * [q^(kn) -1]/(q-1) S - S =[a1/(q-1)]*[q^(kn) - q^(k-1)n] = [a1/(q-1)] * q^[(k-1)n] * (q^n -1) = [a1 * (q^n -1... 解...
Sn = a1 * (q^n -1)/(q-1) S2n = a1 * (q^2n -1)/(q-1) S = a1 * [q^(k-1)n -1]/(q-1) Skn = a1 * [q^(kn) -1]/(q-1) S - S =[a1/(q-1)]*[q^(kn) - q^(k-1)n] = [a1/(q-1)] * q^[(k-1)n] * (q^n -1) = [a1 * (q^n -1...反馈...
证:S(2n)-Sn=a(n+1)+a(n+2)+...+a(2n)=a1·qⁿ+a2·qⁿ+...+an·qⁿ=qⁿ·(a1+a2+...+an)=qⁿ·Sn S(3n)-S(2n)=a(2n+1)+a(2n+2)+...+a(3n)=a1·q^(2n)+a2·q^(2n)+...+an·q^(2n)=q^(2n)·(a1+a2+...+an)=...
前n项和的性质(1)Sn,S2n-Sn,S3n-S2n,…也成等差数列,公差为n2d(2)若{an}是等差数列,则S,n也成等差数列,其首项与{an}首项相同,公差是{an}公差的,2.(3)数列项数为奇数2n-1时(Sn、Tn分别是等差数列an、bn的前n项和)S2n-1(2n-1)an特例S2n-1(2n-1)anS2n-1=(2n-1)an(2)T2m-1(2m-1...
数列求s2n与sn区别为:性质不同、公式不同、数列元素个数不同。一、性质不同 1、s2n:s2n是级数∑a2n的部分和。2、sn:sn是级数∑an的部分和。二、公式不同 1、s2n:s2n的公式为s2n=a1+a2+……+an+a(n+1)+a(n+2)+……+a(2n-1)+a(2n)。2、sn:sn的公式为s2n=a1+a2+……+a(...
∵等差数列{an}中,d≠0,且对任意n∈N*,Sn与S2n的比值是定值,∴ S2 S1= S4 S2,∴ 2a1+d a1= 4a1+6d 2a1+d,∴4a12+6a1d=4a12+4a1d+d2,∴2a1=d,∴an=a1+(n-1)d=a1+(n-1)•2a1=2a1n-a1=a1(2n-1).故答案为:an=a1(2n-1). 由已知条件推导出4a12+6a1d=4a12+4a1d+d2,从而...
解析:由条件知Sn,S2n-Sn,S3n-S2n成等比数列,所以Sn(S3n-S2n)=(S2n-Sn)2,展开整理得S+S=Sn(S2n+S3n),所以x=y.相关知识点: 试题来源: 解析 答案:x=y 解析:由条件知Sn,S2n-Sn,S3n-S2n成等比数列,所以Sn(S3n-S2n)=(S2n-Sn)2,展开整理得S+S=Sn(S2n+S3n),所以x=y.反馈...
S3n = a + a * r + a * r^2 + ... + a * r^(3n-1)这里我们可以观察出两个重要的关系:1. S2n 与 Sn 的关系:将 S2n 分为两部分:S2n = (a + a * r + a * r^2 + ... + a * r^(n-1)) + (a * r^n + a * r^(n+1) + a * r^(2n-1))注意到第...
已知,数列{an}的前n项和为Sn,通项公式为an=1n且f(n)={S2n,n=1S2n−Sn−1,n⩾2.计算f(1),f(2),f(3)的值.比较f(n)与1的大小