smooth L1损失函数为: smoothL1(x)={0.5x2if|x|<1|x|−0.5 smooth L1损失函数曲线如下图所示,作者这样设置的目的是想让loss对于离群点更加鲁棒,相比于L2损失函数,其对离群点(指的是距离中心较远的点)、异常值(outlier)不敏感,可控制梯度的量级使训练时不容易跑飞。 smooth L1损失函数曲线 四、总结 从...
smooth L1 损失改进了两者的缺点,分段函数1是L2损失,分段函数2 是L1损失。 其中x=f(x)-y,为真实值和预测值的差值。 L1、L2和smooth L1三者的图像为: 从图中可以看出,该函数是一个分段函数,在[-1,1]之间是L2损失,其他区间就是L1损失,这样即解决了L1损失在0处不可导的问题,也解决了L2损失在异常点处梯度...
所以FastRCNN采用稍微缓和一点绝对损失函数(smooth L1损失),它是随着误差线性增长,而不是平方增长。 Smooth L1 和 L1 Loss 函数的区别在于,L1 Loss 在0点处导数不唯一,可能影响收敛。Smooth L1的解决办法是在 0 点附近使用平方函数使得它更加平滑。 Smooth L1的优点 相比于L1损失函数,可以收敛得更快。 相比于L2...
L1损失函数的导数为常数,在模型训练后期标签和预测的差异较小时,梯度值任然较大导致损失函数在稳定值附近波动难以进一步收敛。 SmoothL1损失函数在x较大时,梯度为常数解决了L2损失中梯度较大破坏训练参数的问题,当x较小时,梯度会动态减小解决了L1损失中难以收敛的问题。 所以在目标检测的Bounding box回归上早期会考虑Sm...
smooth L1损失函数为: 在这里插入图片描述 smooth L1损失函数曲线如下图所示,作者这样设置的目的是想让loss对于离群点更加鲁棒,相比于L2损失函数,其对离群点(指的是距离中心较远的点)、异常值(outlier)不敏感,可控制梯度的量级使训练时不容易跑飞。 在这里插入图片描述...
Smooth L1 和 L1 Loss 函数的区别在于,L1 Loss 在0点处导数不唯一,可能影响收敛。Smooth L1的解决办法是在 0 点附*使用*方函数使得它更加*滑。 Smooth L1的优点 相比于L1损失函数,可以收敛得更快。 相比于L2损失函数,对离群点、异常值不敏感,梯度变化相对更小,训练时不容易跑飞。 如果您觉得阅读本文对您有...
L1 loss曲线.jpg L2 loss 均方误差(MSE),二次损失 均方误差是最常用的回归损失函数,它是我们的目标变量和预测值的差值平方和。 L2 loss公式 L2 loss.jpg 下图是均方误差函数图,其中目标真值为100,预测值范围在-10000到10000之间。均方误差损失(Y轴)在预测值(X轴)=100处达到最小值。范围为0到∞。
1,也不会太大以至于破坏网络参数。smoothL1完美地避开了L1和L2损失的缺陷。其函数图像如下:...
Smooth L1损失函数是L1损失函数和L2损失函数的结合体,它在误差较小时采用L2损失函数的平方项,以避免L1损失函数在误差接近0时梯度恒定的问题;在误差较大时则采用L1损失函数的线性项,以限制梯度过大可能导致的训练不稳定问题。 优点: 融合了L1和L2损失函数的优点,既对异常值有一定的鲁棒性,又能在误差较小时保持较...
smooth L1 完美地避开了 L1 和 L2 损失的缺陷。其函数图像如下: 由图中可以看出,它在远离坐标原点处,图像和 L1 loss 很接近,而在坐标原点附近,转折十分平滑,不像 L1 loss 有个尖角,因此叫做 smooth L1 loss。 参考: 请问faster rcnn和ssd 中为什么用smooth l1 loss,和l2有什么区别?