目录 前言smoothL1loss从两个方面限制梯度 前言 Fast R-CNN中的bounding boxes回归使用的便是smoothL1loss. 主要原因是,smoothL1具有... x的梯度的绝对值达到上限1,也不会太大以至于破坏网络参数。smoothL1完美地避开了L1和L2损失的缺陷。其函数图像如下: 由图中可以看出,它在远离坐标原点处,图像和L1 ...
(1)MAE损失(L1) Mean absolute loss(MAE)平均绝对误差,也被称为L1损失,是以绝对误差作为距离,其公式如下: 其中, y——样本x属于某一个类别的真实概率; f(x)——样本属于某一类别的预测概率。 其图像为: 优点:梯度为常数,在异常点(损失值较大)的输入值处不会造成梯度爆炸。 缺点:在0处不可导,且在较小...
所以FastRCNN采用稍微缓和一点绝对损失函数(smooth L1损失),它是随着误差线性增长,而不是平方增长。 Smooth L1 和 L1 Loss 函数的区别在于,L1 Loss 在0点处导数不唯一,可能影响收敛。Smooth L1的解决办法是在 0 点附近使用平方函数使得它更加平滑。 Smooth L1的优点 相比于L1损失函数,可以收敛得更快。 相比于L2...
smooth L1损失函数为: smoothL1(x)={0.5x2if|x|<1|x|−0.5 smooth L1损失函数曲线如下图所示,作者这样设置的目的是想让loss对于离群点更加鲁棒,相比于L2损失函数,其对离群点(指的是距离中心较远的点)、异常值(outlier)不敏感,可控制梯度的量级使训练时不容易跑飞。 smooth L1损失函数曲线 四、总结 从...
【回归损失函数】L1(MAE)、L2(MSE)、Smooth L1 Loss详解 1. L1 Loss(Mean Absolute Error,MAE) 平均绝对误差(MAE)是一种用于回归模型的损失函数。MAE 是目标变量和预测变量之间绝对差值之和,因此它衡量的是一组预测值中的平均误差大小,而不考虑它们的方向,范围为 0~∞。 MAE公式: MAE导数: MAE图像: ......
L1 loss曲线 L1 loss曲线.jpg L2 loss 均方误差(MSE),二次损失 均方误差是最常用的回归损失函数,它是我们的目标变量和预测值的差值平方和。 L2 loss公式 L2 loss.jpg 下图是均方误差函数图,其中目标真值为100,预测值范围在-10000到10000之间。均方误差损失(Y轴)在预测值(X轴)=100处达到最小值。范围为0到∞...
1. Smooth L1 Loss 本方法由微软rgb大神提出,Fast RCNN论文提出该方法 1.1 假设x为预测框和真实框之间的数值差异,常用的L1和L2 Loss定义为: 1.2 上述的3个损失函数对x的导数分别为: 从损失函数对x的导数可知: 损失函数对x的导数为常数,在训练后期,x很小时,如果learning rate 不变,损失函数会在稳定值附近波...
目标检测任务的损失函数由Classificition Loss和Bounding Box Regeression Loss两部分构成。本文介绍目标检测任务中近几年来Bounding Box Regression Loss Function的演进过程,其演进路线是Smooth L1 LossIoU LossGIoU LossDIoU LossCIoU Loss,本文按照此路线进行讲解。
对于大多数CNN网络,我们一般是使用L2-loss而不是L1-loss,因为L2-loss的收敛速度要比L1-loss要快得多。 对于边框预测回归问题,通常也可以选择*方损失函数(L2损失),但L2范数的缺点是当存在离群点(outliers)的时候,这些点会占loss的主要组成部分。比如说真实值为1,预测10次,有一次预测值为1000,其余次的预测值为...
简单的说Smooth L1就是一个平滑版的L1 Loss,其公式如下: SmoothL_{1} = _{0.5x^{2}, |x| < 1}^{|x| - 0.5, |x| > 1} 该函数实际上是一个分段函数,在[-1,1]之间就是L2损失,解决L1在0处有折点,在[-1, 1]区间以外就是L1损失,解决离群点梯度爆炸问题,所以能从以下两个方面限制梯度: ...