The function uses the maximum number of CORDIC iterations for the numeric type of X. example [S,C] = cordicsinhcosh(X,N) additionally specifies the maximum shift value N in the CORDIC iterations. For fixed-point input X, the maximum shift value is limited by the word length minus one. ...
check(acos(3.*x +2.),'acos{s}(3.0{S}*x + 2.0{S})') check(atan(3.*x +2.),'atan{s}(3.0{S}*x + 2.0{S})') check(atan2(3.*x,2.*y),'atan2{s}(3.0{S}*x, 2.0{S}*y)') check(sinh(3.*x +2.),'sinh{s}(3.0{S}*x + 2.0{S})') check(cosh(3.*x -1.),'...
= sinh_special_values[special_type(x)][special_type(y)] # need to raise ValueError if y is +/- infinity and x is not # a NaN if isinf(y) and not isnan(x): raise ValueError("math domain error") return r if fabs(x) > CM_LOG_LARGE_DOUBLE: x_minus_one = x - copysign(1....
Definition 1. If the random variable X has a pdf given by 𝑟(𝑥)=𝑥2𝜙(𝑥), then we say that X follows a bimodal-normal distribution, and it is denoted as 𝑋∼𝑁𝐵 (see [18]). Remark 1. Let W and U independent random variables with 𝑊∼𝜒2(3), a chi-sq...