1. 前言SSD -Single Shot MultiBox Detector Single Shot指明了SSD算法属于one-stage方法MultiBox指明了SSD是多框预测 SSD具有如下主要特点:从YOLO中继承了将detection转化为regression的思路,一次完成目标定位…
Single Shot Multibox Detection (SSD)实战(上) 介绍了边界框、锚框、多尺度对象检测和数据集。现在,我们将利用这些背景知识构建一个目标检测模型:单次多盒检测(SSD)。这种快速简便的模式已经被广泛应用。该…
由于SSD根据基本网络块和每个多尺度特征块生成不同数量的不同大小的锚盒,然后预测锚盒的类别和偏移量(即预测的边界框),以检测不同大小的对象,因此SSD是一种多尺度目标检测模型。 Fig. 1The SSD is composed of a base network block and several multiscale feature blocks connected in a series. 接下来,我们...
Implementing Single Shot Detector (SSD) in Keras: Part I V— Network Structure. https://towardsdatascience.com/implementing-single-shot-detector-ssd-in-keras-part-iv-data-augmentation-59c9f230a910 Implementing Single Shot Detector (SSD) in Keras: Part V— Network Structure. https://towardsdatas...
目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-stage方法,如R-CNN系算法,其主要思路是先通过启发式方法(selective search)或者CNN网络(RPN)产生一系列稀疏的候选框,然后对这些候选框进行分类与回归,two-stage方法的优势是准确度高;(2)one-stage方法,如Yolo和SSD,其主要...
Small target detectionSingle-shot detection (SSD)Object detection is a fundamental problem in computer vision. Although impressive results have been achieved on large/medium-sized objects, the detection performance of small objects remains a challenging task. Automatic ship detection on remote sensing ...
Fig.2 SSD 框架 正负样本 将prior box和grount truth box按照IOU(JaccardOverlap)进行匹配,匹配成功则这个prior box就是positive example(正样本),如果匹配不上,就是negative example(负样本),显然这样产生的负样本的数量要远远多于正样本。这里将前向loss进行排序,选择最高的num_sel个prior box序号集合D。那么如果...
Single Shot Multibox Detection (SSD)实战(上) 介绍了边界框、锚框、多尺度对象检测和数据集。现在,我们将利用这些背景知识构建一个目标检测模型:单次多盒检测(SSD)。这种快速简便的模式已经被广泛应用。该模型的一些设计思想和实现细节也适用于其他对象检测模型。
Implementing Single Shot Detector (SSD) in Keras: Part I V— Network Structure. https://towardsdatascience.com/implementing-single-shot-detector-ssd-in-keras-part-iv-data-augmentation-59c9f230a910 Implementing Single Shot Detector (SSD) in Keras: Part V— Network Structure. https://towardsdata...
SSD (Single Shot Multibox Detector)算法以其直接使用卷积神经网络进行目标物体检测的特性而得名。它的一大亮点是其对不同尺度物体的处理方式,通过使用不同尺度的特征图,使得算法能同时适应大目标和小目标的检测,从而实现高准确率的mAP超过70%以上。该算法的灵活性体现在对先验框的设定上,可以根据目标...