Answer to: Establish the identity. csc theta + cot theta = sin theta over 1 - cos theta By signing up, you'll get thousands of step-by-step...
【解析】 解:(1)$$ \because \overrightarrow { a } = ( 2 , \sin \theta ) , \overrightarrow { b } = ( 1 , \cos \theta ) , \overrightarrow { a } \cdot \overrightarrow { b } = \frac { 1 3 } { 6 } , $$ ∴$$ 2 + \sin \theta \cos \theta = \frac { 1...
(2)复数三角形式的除法一般地,如果非零复数$$ z = r ( \cos \theta + i \sin \theta ) $$,那么-θ是 $$ \overlin
{n}=(c,d)则\overrightarrow{m}\cdot \overrightarrow{n}=|\overrightarrow{m}|\cdot |\overrightarrow{n}|\cos\langle\overrightarrow{m},\overrightarrow{n}\rangle\leqslant |\overrightarrow{m}|\cdot |\overrightarrow{n}|,代入坐标整理即证,当且仅当\overrightarrow{m}与\overrightarrow{n...
Simplify. 1 + tan^2 theta over 1 + cot^2 theta Simplify the expression. (1 + cot theta) (1 - cot theta) - csc^2 theta A) 2 cot^2 theta. B) 0. C) -2 cot^2 theta. D) 2. Write sec theta (tan theta + cot theta) in terms of...
Answer to: Prove the identity. sin theta cot theta = cos theta. By signing up, you'll get thousands of step-by-step solutions to your homework...
theta , \sin \theta ) , \overrightarrow { b } = ( \sqrt { 3 } , - 1 ) , $$ 所以$$ \overrightarrow { a } \cdot \overrightarrow { b } = - \frac { 1 } { 2 } $$,即$$ \overrightarrow { a } \cdot \overrightarrow { b } = \sqrt { 3 } \cos \theta - ...
( \cos \theta , \sin \theta ) , \overrightarrow { b } = ( \sqrt { 3 } , - 1 ) , $$ 即$$ \overrightarrow { a } \cdot \overrightarrow { b } = \sqrt { 3 } \cos \theta - \sin \theta = - 2 $$, 所以$$ \cos ( \theta + \frac { \pi } { 6 ...
0^\infty\cos(x^2)\mathrm dx=\int_0^\infty\sin(x^2)\mathrm dx={\sqrt{2\pi}\over4} ...
Answer to: Prove the identity. {1 + cos theta} / {sin theta} + {sin theta} / {1 + cos theta} = 2 csc theta By signing up, you'll get thousands of...