print(my_list) 在这个示例中,我们定义了一个函数shuffle_with_seed(),它接收一个列表和一个随机种子作为参数。我们使用random.seed()函数来设置随机种子,然后调用random.shuffle()函数来打乱列表。 四、shuffle的应用场景 shuffle操作在数据处理、机器学习、游戏开发等领域中有广泛的应用。以下是几个常见的应用场景:...
A list is an ordered sequence of elements, and theshuffle()function from thebuilt-inrandom module can be used to shuffle the order of the elements in the Python list. Theshuffle()function takes a sequence, such as a list, and modifies it in place by shuffling the order of its elements ...
Python’sNumPypackage offers various methods that are used to perform operations involving randomness, such as the methods to randomly select one or more numbers from a given list of numbers, or to generate a random number in a given range, or to randomly generate a sample from a given distr...
【Python篇】标准模块之random随机数 random.random()随机生成0-1之间的1个数random.randint()随机生成1个指定范围内的整数random.choice()随机获取()中的1个元素,()中必须是有序类型random.sample(a,b)随机获取a中指定b长度的片段,不会改变原序列random.shuffle(list)将一个列表内的元素打乱 ...
Python里面random.shuffle源码如下: 1defshuffle(self, x, random=None, int=int):2"""x, random=random.random -> shuffle list x in place; return None.34Optional arg random is a 0-argument function returning a random5float in [0.0, 1.0); by default, the standard random.random.6"""78ifra...
以下是 shuffle() 方法的语法:import random random.shuffle (lst )注意:shuffle()是不能直接访问的,需要导入 random 模块,然后通过 random 静态对象调用该方法。
Python random data generation Quiz Table of contents The random.shuffle() function Shuffle a List Randomly Shuffle Not in Place Option 1: Make a Copy of the Original List Option 2: Shuffle list not in Place using random.sample() Shuffle Two Lists At Once With Same Order ...
3 Python 22000 40days 1200 4 pandas 24000 60days 2500 If you wanted to get n random rows usedf.sample(n=2). Pandas Shuffle Rows by Setting New Index As you see above the Index also shuffled along with the rows. If you wanted a new Index starting from 0 by keeping the shuffled Inde...
import time from pathlib import Path from multiprocessing import Pool, cpu_count import torch from datasets import Dataset, load_dataset split = "train" split_save_dir = "/tmp/random_split" def generate_random_example(): return { 'inputs': torch.randn(128).tolist(), 'indices': torch.ran...
In the example below, we create a linked list of integers and add some integers to it. But here we passed another argument that is the Random function which will become the source of Randomness. Then we passed the Random function with seed value 5. This is another flavor, or we can say...