iou = iou - distance - 0.5 * ( shape_cost) return iou # IoU 替换Shape IoU损失函数(基于MMYOLO) 由于MMYOLO中没有实现Shape IoU损失函数,所以需要在mmyolo/models/iou_loss.py中添加ShapeIoU的计算和对应的iou_mode,修改完以后在终端运行 python setup.py install 再在配置文件中进行修改即可。修改例子如...
这篇文章指出现有Loss侧重于考虑GT框与预测框之间的几何约束,而忽略了边界框本身的形状、尺度等几何因素对回归结果的影响。然后提出了Shape - IoU方法,可以关注包围盒本身的形状和尺度来计算损失,从而提高精度。最后使用SOTA单阶段检测器在不同规模的数据集上进行了一系列的对比实验,证明Shape - IoU优于现有的方法。
边界框回归损失在目标检测中非常重要,典型Loss就是IoU、GIoU、CIoU、SIoU。改动方案基本上都是在IoU上添加新的几何约束(GT框和 Anchor 框的距离、形状和角度),但是都忽略了边界框自身的形状和尺寸的影响。今天笔者为大家推荐一篇最新的开源工作Shape-IoU,借助边界框本身的形状和尺度来计算损失,使边界框回归更加准确,...
边界框回归损失在目标检测中非常重要,典型Loss就是IoU、GIoU、CIoU、SIoU。改动方案基本上都是在IoU上添加新的几何约束(GT框和 Anchor 框的距离、形状和角度),但是都忽略了边界框自身的形状和尺寸的影响。今天笔者为大家推荐一篇最新的开源工作Shape-IoU,借助边界框本身的形状和尺度来计算损失,使边界框回归更加准确,...
2.在已有的边界盒回归损失函数的基础上,考虑到边界盒回归样本本身的形状和尺度对边界盒回归的影响,提出了shape- iou损失函数,针对微小目标检测任务提出了 the shape-dotdistance and shape-nwd loss 3.我们使用最先进的单级探测器对不同的检测任务进行了一系列的对比实验,实验结果证明本文方法的检测效果优于现有的方...
2.在已有的边界盒回归损失函数的基础上,考虑到边界盒回归样本本身的形状和尺度对边界盒回归的影响,提出了shape- iou损失函数,针对微小目标检测任务提出了 the shape-dotdistance and shape-nwd loss 3.我们使用最先进的单级探测器对不同的检测任务进行了一系列的对比实验,实验结果证明本文方法的检测效果优于现有的方...
Based on the above conclusions, we propose the Shape IoU method, which can calculate the loss by focusing on the shape and scale of the bounding box itself, thereby making the bounding box regression more accurate. Finally, we validated our method through a large number of comparative ...
文章目录前言物体检测基础YOLO —— 对图像碎片进行物体检测检测单个物体同时检测多个物体多边界框的处理 —— IOU方法参考链接 前言YOLO是目前比较流行的物体检测算法,有着体积小,检测准确度高的强大优点。这里对YOLO的核心思想知识点,使用可视化的方法做一总结。物体检测基础YOLO是用于识别图像中的物体的网络。这类网络...
dfl_loss(Distribution Focal Loss)是YOLO系列中的一种损失函数,特别是在一些改进版本如YOLOv5和YOLOv7中被引入。它的主要目的是解决目标检测中的类别不平衡问题,并提高模型在处理小目标和困难样本时的性能。 边界框回归损失详解 box_loss(边界框回归损失)是用于优化预测边界框与真实边界框之间的差异的部分。 box_lo...
shape iou 边界框回归损失在目标检测中非常重要,典型Loss就是IoU、GIoU、CIoU、SIoU。改动方案基本上都是在IoU上添加新的几何约束(GT框和 Anchor 框的距离、形状和角度),但是都忽略了边界框自身的形状和尺寸的影响。今天笔者为大家推荐一篇最新的开源工作Shape-IoU,借助边界框本身的形状和尺度来计算损失,使边界框回...