SOFTIOU Loss 的计算公式如下: SOFTIOU Loss = -log(Softmax(IOU)) 其中,Softmax 函数是一个常用的激活函数,用于将一组数值映射到 0 到 1 之间的一个概率分布。在这里,Softmax 函数将 IOU 值映射到 0 到 1 之间,并且保证所有映射后的值之和为 1。然后,取这个概率分布的负对数作为 SOFTIOU Loss。
对于每个类别的mask,都计算一个 Dice 损失: 将每个类的 Dice 损失求和取平均,得到最后的 Dice soft loss。 下面是代码实现: def soft_dice_loss(y_true, y_pred, epsilon=1e-6):'''Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.Assumes the...
NMS 该nms在DIou loss一文中提出,在nms过程中采用DIoU的计算方式替换了IoU,由于DIoU的计算考虑到了两框中心点位置的信息,故使用DIoU进行评判的nms效果更符合实际,效果更优。...非极大值抑制 Nms Soft Nms DIou Nms 一、Soft Nms 思路:不要粗鲁地删除所有IOU大于阈值的框,而是降低其置信度。 Method 先直接上...
IoU 的计算公式和这个很像,区别就是 TP 只计算一次: 和Dice soft loss 一样,通过 IoU 计算损失也是使用预测的概率值: 其中C 表示总的类别数。 总结: 交叉熵损失把每个像素都当作一个独立样本进行预测,而 dice loss 和 iou loss 则以一种更“整体”的方式来看待最终的预测输出。 这两类损失是针对不同情况,...
随着人工智能技术的不断发展,手势识别和游戏AI对战系统已经成为了研究的热点领域。手势识别可以应用于人机交互、虚拟现实、智能家居等领域,而游戏AI对战系统则可以提供更具挑战性和趣味性的游戏体验。然而,目前的手势识别和游戏AI对战系统还存在一些问题,例如准确性不高、响应速度慢等。