该算法由于每个像素计算互不干扰可以并行计算,所以可以实时。但由于所基于的局部窗口视差相同的假设在很多情况下并不成立导致匹配效果较差。 半全局立体匹配算法SGM 综合上述局部和全局算法的优缺点,半全局算法依旧采用全局框架,但是在计算能量函数最小化的步骤时使用高效率的一维路径聚合方法来代替全局算法中的二维最小化...
代价聚合 采用全局立体匹配算法,即找到每个像素的最优视差使得整体能量最小。能量方程如下: (左右滑动可以查看完整公式) SGM能量方程如下公式: 这是一个二维优化问题,为了提高优化效率,SGM将问题转化为使用一维路径聚合的方式来近似二维最优,提高效率的同时也保证了效果。 (左右滑动可以查看完整公式) 式中,为匹配代价...
半全局立体匹配算法SGM 综合上述局部和全局算法的优缺点,半全局算法依旧采用全局框架,但是在计算能量函数最小化的步骤时使用高效率的一维路径聚合方法来代替全局算法中的二维最小化算法,使用一维最优来近似二维最优,得到的视差图在效果上和全局算法没有太大的差别,但是算法效率却有非常大的提升。 SGM算法 参考文献: ...
代价聚合时,SGM由于每个像素视差范围都一样,所以各个搜索路径都有对应的视差,tSGM由于每个像素视差范围不一样有的可能都没有重叠范围,所以之前的代价聚合计算方法需要调整,把没有重合的情况考虑进去。 调整如下: SGM/tSGM代码实现 代码框架 部分代码实现 //参考文献:SGM:Stereo Processing by Semiglobal Matching and...
该算法由于每个像素计算互不干扰可以并行计算,所以可以实时。但由于所基于的局部窗口视差相同的假设在很多情况下并不成立导致匹配效果较差。 半全局立体匹配算法SGM 综合上述局部和全局算法的优缺点,半全局算法依旧采用全局框架,但是在计算能量函数最小化的步骤时使用高效率的一维路径聚合方法来代替全局算法中的二维最小化...
// SGM 算法主要实现两种经典SGM和tSGM,主要区别是代价聚合的视差搜索范围不同,故聚合代价有区别。经典SGM使用的全局视差范围,每个 // 像素的视差范围都是相同。tSGM 视差搜素范围每个像素的范围都不一样。这样可以大大减少代价聚合的计算量。 void SemiGlobalMatcher::Match(const Scene& scene, IIndex idxImage...
该算法由于每个像素计算互不干扰可以并行计算,所以可以实时。但由于所基于的局部窗口视差相同的假设在很多情况下并不成立导致匹配效果较差。 半全局立体匹配算法SGM 综合上述局部和全局算法的优缺点,半全局算法依旧采用全局框架,但是在计算能量函数最小化的步骤时使用高效率的一维路径聚合方法来代替全局算法中的二维最小化...