两个出发点不一样,在SGD的时候一样。但是在Adam不一样。
通过上述分析我们得知,Adam在前期优化速度较快,SGDM在后期优化精度较高;SWATS算法在提出在前期使用Adam算法,后期使用SGDM算法,从而在保证算法精度的同时,提高了算法的速度,但此算法存在两个问题:何时切换和如何切换两种算法,因为原作者并并没有针对这两个问题给出确切的解决方案,因此SWATS算法的应用并不是很广泛 3. A...
首先在速度方面,很显然:SGD < adam < adamw SGD最大的缺点是下降速度慢,而且可能会在沟壑的两边持续震荡,停留在一个局部最优点。 SGD缺点:容易困在局部最优的沟壑里面。 Adam缺点: Adam缺点一:可能不收敛 SGD没有用到二阶动量,因此学习率是恒定的。而Adam的二阶动量随着固定时间窗口内的积累,使得vt可能会时...
Adam相对SGD优化器强太多了,在对参数的初始化上,超参的设定上都有很大的优势。
如上所示,SGDM在CV里面应用较多,而Adam则基本横扫NLP、RL、GAN、语音合成等领域。所以我们基本按照所属领域来使用就好了。比如NLP领域,Transformer、BERT这些经典模型均使用的Adam,及其变种AdamW。 3 优化器对比 CV任务实验 有人研究过几大优化器在一些经典任务上的表现。如下是在图像分类任务上,不同优化器的迭代次数...
深度学习基础入门篇[三]:优化策略梯度下降算法:SGD、MBGD、Momentum、Adam、AdamW 1.梯度下降算法(优化器) 1.1 原理解释 如果我们定义了一个机器学习模型,比如一个三层的神经网络,那么就需要使得这个模型能够尽可能拟合所提供的训练数据。但是我们如何评价模型对于数据的拟合是否足够呢?那就需要使用相应的指标来评价它的...
Adam Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下: 其中, , 分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望 ...
Juliuszh:一个框架看懂优化算法之异同 SGD/AdaGrad/Adam 主要是对深度学习各种优化器 (从SGD到AdamW) 使用统一的框架做一次整理,本文相比于链接从源代码的角度理解这些优化器的思路。 代码来自 PyTorch1.7.0 官方教程: https://pytorch.org/docs/1.7.0/optim.html 首先我们来回顾一下各类优化算法。 深度学习优化算...
AdamW = Adam + Weight decay 这么简单为什么还能是一篇论文呢?原因是,大家通常都会把L2L2正则化和weight decay混为一谈,实现L2L2正则化时并不会真的去在损失函数上加一项,而是计算完梯度后给梯度加上weight decay。Adam刚出时,大家实现的Adam with weight decay也是计算完梯度后对梯度进行weight decay,也就是: ...