必定可以分解为所在方向及其正交方向上的两个方向之和,那么其在方向上的投影就意味着SGD在Adam算法决定的下降方向上前进的距离,而在的正交方向上的投影是 SGD 在自己选择的修正方向上前进的距离。 图片来自原文,这里p为Adam下降方向,g为...
下文介绍Adam+SGD的组合策略,以及一些比较有用的tricks。 不同优化算法的核心差异:下降方向 从第一篇的框架中我们看到,不同优化算法最核心的区别,就是第三步所执行的下降方向: 这个式子中,前半部分是实际的学习率(也即下降步长),后半部分是实际的下降方向。SGD算法的下降方向就是该位置的梯度方向的反方向,带一...
\eta_t^{SGD} = \alpha^{SGD}\cdot g_t. \eta_t^{SGD}必定可以分解为\eta_t^{Adam}所在方向及其正交方向上的两个方向之和,那么其在\eta_t^{Adam}方向上的投影就意味着SGD在Adam算法决定的下降方向上前进的距离,而在\eta_t^{Adam}的正交方向上的投影是 SGD 在自己选择的修正方向上前进的距离。 图...
必定可以分解为 所在方向及其正交方向上的两个方向之和,那么其在 方向上的投影就意味着SGD在Adam算法决定的下降方向上前进的距离,而在 的正交方向上的投影是 SGD 在自己选择的修正方向上前进的距离。 图片来自原文,这里p为Adam下降方向,g为梯度方向,r为SGD的学习率。 如果SGD要走完Adam未走完的路,那就首先要接...
考虑不同算法的组合。先用Adam进行快速下降,而后再换到SGD进行充分的调优。切换策略可以参考本文介绍的方法。 数据集一定要充分的打散(shuffle)。这样在使用自适应学习率算法的时候,可以避免某些特征集中出现,而导致的有时学习过度、有时学习不足,使得下降方向出现偏差的问题。
Adam+SGD 组合策略 正是在每一个十字路口的选择,决定了你的归宿。如果上天能够给我一个再来一次的机会,我会对那个女孩子说:SGD! 不同优化算法的优劣依然是未有定论的争议话题。据我在paper和各类社区看到的反馈,主流的观点认为:Adam等自适应学习率算法对于稀疏数据具有优势,且收敛速度很快;但精调参数的SGD(+Momen...
Adam+SGD 组合策略 正是在每一个十字路口的选择,决定了你的归宿。如果上天能够给我一个再来一次的机会,我会对那个女孩子说:SGD! 不同优化算法的优劣依然是未有定论的争议话题。据我在paper和各类社区看到的反馈,主流的观点认为:Adam等自适应学习率算法对于稀疏数据具有优势,且收敛速度很快;但精调参数的SGD(+Momen...
其中,SGD没有用到二阶动量,因此学习率是恒定的(实际使用过程中会采用学习率衰减策略,因此学习率递减)。AdaGrad的二阶动量不断累积,单调递增,因此学习率是单调递减的。因此,这两类算法会使得学习率不断递减,最终收敛到0,模型也得以收敛。 但AdaDelta和Adam则不然。二阶动量是固定时间窗口内的累积,随着时间窗口的变...
Adam+SGD 组合策略 正是在每一个十字路口的选择,决定了你的归宿。如果上天能够给我一个再来一次的机会,我会对那个女孩子说:SGD! 不同优化算法的优劣依然是未有定论的争议话题。据我在paper和各类社区看到的反馈,主流的观点认为:Adam等自适应学习率算法对于稀疏数据具有优势,且收敛速度很快;但精调参数的SGD(+Momen...
其中,SGD没有用到二阶动量,因此学习率是恒定的(实际使用过程中会采用学习率衰减策略,因此学习率递减)。AdaGrad的二阶动量不断累积,单调递增,因此学习率是单调递减的。因此,这两类算法会使得学习率不断递减,最终收敛到0,模型也得以收敛。 但AdaDelta和Adam则不然。二阶动量是固定时间窗口内的累积,随着时间窗口的变...