优化器对ACC影响也挺大的,比如上图Adam比SGD高了接近3个点。故选择一个合适的优化器也很重要。 Adam收敛速度很快,SGDM相对要慢一些,但最终都能收敛到比较好的点 训练集上Adam表现最好,但验证集上SGDM最好。可见SGDM在训练集和验证集一致性上,比Adam好。 NLP任务实验 LSTM模型上,可见Adam比SGDM收敛快很多。最终...
Adagrad会累加之前所有的梯度平方,而RMSprop仅仅是计算对应的平均值,因此可缓解Adagrad算法学习率下降较快的问题。 9.Adam Adam是另一种自适应学习率的方法。总结以上算法,以SGD作为最初的算法,Momentum在其基础上加入了一阶动量(历史梯度的累计), AdaGrad和RMSProp在其基础上加入了二阶动量(历史梯度的平方累计),Adam...
Adagrad会累加之前所有的梯度平方,而RMSprop仅仅是计算对应的平均值,因此可缓解Adagrad算法学习率下降较快的问题。 9.Adam Adam是另一种自适应学习率的方法。总结以上算法,以SGD作为最初的算法,Momentum在其基础上加入了一阶动量(历史梯度的累计), AdaGrad和RMSProp在其基础上加入了二阶动量(历史梯度的平方累计),Adam...
SGD作为最基础的优化器,具有计算简单和实时更新的优点,但收敛速度较慢且容易陷入局部最优。SGDM通过引入动量项加速了收敛并减少了震荡。Adagrad和RMSProp通过自适应调整学习率提高了优化效率,而Adam则结合了动量法和RMSProp的优点,成为目前广泛使用的优化器之一。 在实际应用中,建议根据具体任务和数据集的特点选择合适的优...
SGD对所有参数更新时应用同样的 learning rate,如果我们的数据是稀疏的,我们更希望对出现频率低的特征进行大一点的更新。LR会随着更新的次数逐渐变小。 5.Adam:Adaptive Moment Estimation 这个算法是另一种计算每个参数的自适应学习率的方法。相当于 RMSprop + Momentum ...
本文将从随机梯度下降(Stochastic Gradient Descent,SGD)到自适应矩估计(Adam)这两个优化器进行比较与分析。 1.随机梯度下降(SGD) 随机梯度下降是最简单、最基础的优化器之一,其主要思想是通过计算损失函数对参数的梯度来更新参数。每次迭代时,SGD随机选择一个小批量的训练样本进行梯度计算和参数更新,因此它的计算效率...
随机梯度下降(SGD) 2 标准动量优化算法(Momentum) 3 RMSProp算法 4 Adam 5 总结 正文开始 1 随机梯度下降(SGD) 算法介绍 对比批量梯度下降法,假设从一批训练样本 中随机选取一个样本 。模型参数为 ,代价函数为 ,梯度为 ,学习率为 ,则使用随机梯度下降法更新参数表达式为: ...
1. Adam和 SGDM Adam和SGDM作为当今最优秀的两种深度学习优化器,分别在效率和精度上有着各自的优势,下面我们将分析两种优化器各自优势的原因,两边的两张图分别是 几种常见的优化器在猫狗分类数据集上的分类准确率曲线,第一个是训练集,第二个是测试集 ...
Adam Adam 算法可以看作是在 SGD 的基础上进行了优化,它结合了梯度的一阶矩估计和二阶矩估计来动态...
1.优化器:从SGD到Adam到AdamW09-292.浅谈位置编码(RoPE)03-253.激活函数和GLU10-29 收起 1. SGD 随机梯度下降(stochastic gradient descent,SGD) 输入数据为(x, y)组成的pair,模型参数是WW,随机选择一批样本组成一个batch,输入模型计算loss:L=f(X,Y;W)L=f(X,Y;W),并求出梯度,更新参数时: W=W...