该方法旨在通过根据需求进行检索和自我反思来提升LLMs的生成质量,包括其事实准确性,同时不损害其通用性。SELF-RAG训练了一个任意的LLM,使其能够在给定任务输入时反思自己的生成过程,同时生成任务输出和临时的特殊标记(称为反思标记)。这些反思标记分为检索和评论标记,分别表示了是否需要检索以及生成的质量。 实验结果显...
自我修正:自我反思 RAG(论文):通过在语言模型生成中引入自我反思,这一框架使模型能够修正那些受到幻觉影响或未能解决问题的答案,从而在各种任务中提高了事实性和适用性。 通过将 LangGraph 集成到 RAG 框架中,语言模型能够接入更丰富的知识表示,增强它们生成准确且与上下文相关回答的能力。 广告 当当网正版童书 会飞...
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。 Self-...
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。 Self-...
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。
SELF-RAG是一个增强语言模型质量和事实性的框架,通过检索和自我反思实现,而不损失原始创造性和多功能性。 该框架使模型可以根据检索到的段落生成文本,并使用“反思tokens”自我评估输出的相关性和完整性。 与普通的RAG方法不同,SELF-RAG更加选择性地进行检索,确保从引用源获得完整支持。
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。
近年来,一种名为SELF-RAG(Learning to Retrieve, Generate and Critique through Self-reflection)的新框架,为提升语言模型(LLMs)的事实性和质量提供了新的解决方案。 一、SELF-RAG框架的基本概念 SELF-RAG是由Akari Asai、Zeqiu Wu等研究者提出的一种增强的检索增强生成(RAG)策略。它结合了自我反思和自我评分...