该方法旨在通过根据需求进行检索和自我反思来提升LLMs的生成质量,包括其事实准确性,同时不损害其通用性。SELF-RAG训练了一个任意的LLM,使其能够在给定任务输入时反思自己的生成过程,同时生成任务输出和临时的特殊标记(称为反思标记)。这些反思标记分为检索和评论标记,分别表示了是否需要检索以及生成的质量。 实验结果显...
CRAG 通过减少与不佳检索相关的不准确性,提高了基于 RAG 方法的鲁棒性,保证了生成回答的可靠性。 Self-RAG 通过引入自我反思,极大地提升了语言模型处理各种任务的事实性和适用性。 自适应 RAG 提供了一个动态的解决方案来处理用户查询的复杂性,提高了在多个数据集上的效率和准确性。 代码实现 让我们深入探讨如何结...
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。 Self-...
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。 Self-...
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。
SELF-RAG是一个增强语言模型质量和事实性的框架,通过检索和自我反思实现,而不损失原始创造性和多功能性。 该框架使模型可以根据检索到的段落生成文本,并使用“反思tokens”自我评估输出的相关性和完整性。 与普通的RAG方法不同,SELF-RAG更加选择性地进行检索,确保从引用源获得完整支持。
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。
该工作引入了自我反思检索增强生成(SELF-RAG),通过按需检索和自我反思来提高LLM的生成质量,包括其事实准确性,而不损害其通用性。以端到端方式训练任意LLM,使其学会在任务输入时,通过生成任务输出和间歇性特殊标记(即反思标记)来反思自己的生成过程。反思标记分为检索标记和批判标记,分别表示检索需求和生成质量。
SELF-RAG是由Akari Asai、Zeqiu Wu等研究者提出的一种增强的检索增强生成(RAG)策略。它结合了自我反思和自我评分机制,旨在提高检索文档和生成内容的质量。SELF-RAG的核心在于其自适应检索策略和多方面批评机制,使模型能够根据需求动态地进行检索,并通过预测“反思”令牌来评价自己的生成结果。二...