Self-attention的公式可以分为以下几个部分:查询(query)向量、键(key)向量、值(value)向量、注意力权重和输出。 首先,我们需要将输入序列经过线性变换得到三个向量:查询向量Q,键向量K和值向量V。这些向量通过对输入序列矩阵和线性变换矩阵进行乘法运算得到。具体的公式如下: Q=X某W_q K=X某W_k V=X某W_v ...
Self-attention机制通过计算查询(query)、键值对(key-value pair)之间的关联性来获取每个位置上的表示。 Self-attention的计算过程可以分为三个步骤:查询计算、关联性计算和加权求和。下面将详细介绍每个步骤及其对应的公式。 在查询计算中,我们通过将输入序列的每个位置的特征与查询向量进行内积得到查询的向量表示。查询...
接下来首先要引出这个大名鼎鼎 Attention 计算公式,本文的内容也基本就是走一遍这个公式: Attention(Q,K,V)=softmax(QKTdk)V Transformer 论文中给出的结构是 Encoder-Decoder 架构,其中包含三个不同的 Attention 模块: https://arxiv.org/pdf/1706.03762 他们的区别如下: 但是现在主流的大语言模型都是基于Decoder...
5.4-self-attention计算方法1.mp4(P5)是2023B站最完整的【Transformer】入门到精通全套课程!清华大佬带你吃透Transformer,小白也能信手拈来!的第5集视频,该合集共计67集,视频收藏或关注UP主,及时了解更多相关视频内容。
键值对Attention最核心的公式为:Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V 这个公式比较难理解,我们先不忙关注Q、K、V,而是从公式softmax(XX^T)X入手,一步步拆解下来看 1.XX^T代表什么? 我们知道,矩阵可以看作由一些向量组成,一个矩阵乘以它自己转置的运算,其实可以看成这些向量分别与其他...
Self-Attention 的公式如下: Attention(Q,K,V)=softmax(QKT√dk)VAttention(Q,K,V)=softmax(QKTdk)V 我们以上面的嘈杂聚会中要专注于一个朋友的谈话场景来解释: 查询(Query) 代表当前的焦点或需要翻译的部分。这就像是你想要听的你朋友的声音。
Self-attention的公式可以分为三个步骤:计算查询项(Query)、键项(Key)和值项(Value)、以及计算注意力得分。 首先,我们需要从输入序列中计算查询项(Query)、键项(Key)和值项(Value)。对于输入序列中的每个位置i,我们可以使用线性变换矩阵来计算查询项、键项和值项: ``` Q_i=X_i*W_q K_i=X_i*W_k V...
二、self-attention的计算公式 1. 计算权重 对于输入序列中的每个元素,首先需要计算其与其他所有元素的相关度。这可以通过以下公式来实现: \[ E_{ij} = q(i) \cdot k(j) \] 其中,\( E_{ij} \) 表示元素i与元素j的相关度,\( q(i) \) 表示元素i的查询向量,\( k(j) \) 表示元素j的键向量。
键值对Attention最核心的公式如下图。其实这一个公司中蕴含了很多个点,我们一个一个来讲,请各位跟随我的思路,从最核心的部分入手,细枝末节的部分就会豁然开朗。 Attention Function 上图是大名鼎鼎的Attention Function,第一眼看过去,哦,两个向量相乘除以一个像是normalization的向量的平方根,然后做一个softmax处理,...