Self-Attention包括三个步骤:相似度计算,softmax和加权平均 step1: 相似度计算可以看作大小为(n,d)和(d,n)的两个矩阵相乘:( , )∗( , )= ( ^2⋅ ) ,得到一个 (n,n) 的矩阵. step2: softmax就是直接计算了,时间复杂度为 ( ^2) step3: 加权平均可以看作大小为 (n,n) 和(n,d) 的两个...
然而,随着模型规模的增大和数据量的增长,self-attention的计算复杂度成为了限制Transformer性能和可扩展性的一个重要因素。本文将详细介绍self-attention的计算复杂度计算,包括其原理、常见的计算方法以及优化策略。 1. Self-attention的原理 Self-attention是一种用于计算序列中各个元素之间关联度的机制。在Transformer模型...
Encoder 中的 self-attention 的计算复杂度就是O(H2W2C). Decoder 包括了 self attention 和cross attention,输入包括来自于 encoder 的特征图、N个 object queries。 在decoder 的 cross attention 中,query 元素来自于 object queries,key 元素来自于 encoder 特征图,从 encoder 提供的特征图上提取 key 元素,Nq...