最后再经过一个输出矩阵W_o的线性变换,再经过一个残差连接层(和输入矩阵相加),attention block 的计算就结束了。 三、技术演进 为了极致压缩 KV cache 在推理过程中对显存的需求,从最初的MHA(Multi-head Attention)逐步又演进出了只需要一对 KV 的MQA(Multi-Query Attention)。 MQA虽然压缩了显存但是模型的效果...
首先,self-attention会计算出三个新的向量,在论文中,向量的维度是512维,我们把这三个向量分别称为Query、Key、Value,这三个向量是用embedding向量与一个矩阵相乘得到的结果,这个矩阵是随机初始化的,维度为(64,512)注意第二个维度需要和embedding的维度一样,其值在BP(反向传播)的过程中会一直进行更新,得到的这三...
一、Self-Attention计算过程 二、Self-Attention计算矩阵 ★三、 Self-Attention计算矩阵进一步理解(主要看这个) 四、一些补充 1. Multi-head Self-Attention 2.Positional Encoding-位置信息 3. Self-attention for Image 参考资料 主要学习了以下两部分内容:强烈推荐!台大李宏毅自注意力机制和Transformer详解!_哔哩哔哩...
4-self-attention计算方法是卷王之王:B站大学自然语言处理(nlp)从入门到实践的第4集视频,该合集共计33集,视频收藏或关注UP主,及时了解更多相关视频内容。
最后一点,self-attention有一个致命的缺点,那就是它的计算量是很大的,尤其是多头的情况下,那么多个头每个进行计算时,时间和空间的复杂度都是O(n2),如果序列长度很长的话,会给gpu会带来很大的负担,因此关于如何减少self-attention的计算复杂性问题,有了很多的研究工作,比如sparse-attention。
Self-Attention: 不是输入语句和输出语句之间的Attention机制,而是输入语句内部元素之间或者输出语句内部元素之间发生的Attention机制。 例如在Transformer中在计算权重参数时,将文字向量转成对应的KQV,只需要在Source处进行对应的矩阵操作,用不到Target中的信息。
“The transformer”在计算attention的方式有三种,1. encoder self attention,存在於encoder间. 2. decoder self attention,存在於decoder间,3. encoder-decoder attention, 这种attention算法和过去的attention model相似。 接下来我们透过encoder和decoder两部份,来分别介绍encoder/decoder self attention。
Self-attention是一种能够将输入序列中不同位置的信息进行关联和整合的机制。在自然语言处理中,输入序列通常是一句话或一段文本;在计算机视觉中,输入序列可以是一幅图像的像素。 Self-attention的基本原理是,对输入序列中的每个元素都计算一个权重,然后将这些权重与相应元素的特征向量进行加权求和,得到整合后的表示。这...
Self-attention的公式可以分为以下几个部分:查询(query)向量、键(key)向量、值(value)向量、注意力权重和输出。 首先,我们需要将输入序列经过线性变换得到三个向量:查询向量Q,键向量K和值向量V。这些向量通过对输入序列矩阵和线性变换矩阵进行乘法运算得到。具体的公式如下: Q=X某W_q K=X某W_k V=X某W_v ...
Self-Attention,自注意力机制,又称内部注意力机制,顾名思义,是一种将单个序列的不同位置关联起来以计算同一序列的表示的注意机制。 通过对注意力机制的学习我们知道,在一般任务的Encoder-Decoder框架中,输入Source和输出Target内容是不一样的,比如对于英-中机器翻译来说,Source是英文句子,Target是对应的翻译出的中文句...