SAM 源自于 2023 年 Meta 的 Segment Anything (SA) 项目。Segment Anything(SA)项目:一个图像分割新的任务、模型和数据集。建立了迄今为止最大的分割数据集,在11M许可和尊重隐私的图像上有超过1亿个mask。该模型的设计和训练是灵活的,因此它可以将zero-shot(零样本)转移到新的图像分布和任务。实验评估了它在许...
Segment Anything Model (SAM) 是一个设计精巧的架构,用于高效地生成物体掩膜。其核心组成部分是一个重量级的图像编码器,它能够输出图像嵌入。这一图像嵌入随后可以被不同类型的输入提示高效查询,以实时速度生成物体掩膜。值得一提的是,对于那些可能对应多个物体的模糊提示,SAM 能够输出多个有效接下来,我们将介绍用于可...
Meta开源了一个图像分割模型【SegmentAnything Model】,简称SAM模型,号称分割一切,在短短开源的一周内,截止今天Github已经24k的star了! 1.下载项目 项目1:https://github.com/zhouayi/SAM-Tool 项目2:https://github.com/facebookresearch/segment-anything 下...
SAM(Segment Anything Model),顾名思义,即为分割一切!该模型由Facebook的Meta AI实验室,能够根据文本指令或图像识别,实现对任意物体的识别与分割。它的诞生,无疑是CV领域的一次重要里程碑。 论文地址:https://arxiv.org/abs/2304.02643 项目地址:https://github.com/facebookresearch/segment-anything ...
Segment Anything Model 2(SAM 2)作为Meta公司发布的Segment Anything Model(SAM)的升级版本,在图像和视频分割领域展现出了显著的优点和特性。 论文连接:https://arxiv.org/pdf/2408.00714 Demo: https://sam2.metademolab.com Code: https://github.com/facebookresearch/segment-anything-2 Website: https://...
SAM预测对象掩码,给出预测所需对象的提示。该模型首先将图像转换为图像嵌入,该图像嵌入允许从提示有效地生成高质量的掩模。SamPredictor类为模型提供了一个简单的接口,用于提示模型。它允许用户首先使用set_image方法设置图像,该方法计算必要的图像嵌入。然后,可以通过预测方法提供提示,以根据这些提示有效地预测掩码。该模...
Meta 的 FAIR 实验室刚刚发布了Segment Anything Model (SAM),这是一种最先进的图像分割模型,旨在改变计算机视觉领域。 SAM 基于对自然语言处理 (NLP)产生重大影响的基础模型。它专注于可提示的分割任务,使用提示工程来适应不同的下游分割问题。 为什么我们对 SAM 如此兴奋?
任务不可知的基础模型的这一新的研究趋势是最近由一个被称为segment anything model (SAM)的模型引发的,该模型是为一般图像分割而设计的。SAM 是一个可提示的模型,使用可提示的分割任务对 1100 万张图像进行了超过 10 亿个掩码的训练,从而实现了强大的零样本泛化。
CV大模型Segment Anything Model (SAM)——分割一切,具有预测提示输入的图像分割实践 不得不说,最近的AI技术圈很火热,前面的风头大都是chatGPT的,自从前提Meta发布了可以分割一切的CV大模型之后,CV圈也热起来了。 好恐怖的增长速度,昨天写博客的时候也不到6k,今天一早已经翻一倍,估计随着这波宣传推广后,会迎来...