PyTorch: 这个工具箱也很好用,也很强大,但是它比TensorFlow更容易上手,像积木一样,可以一块一块地搭建你的“房子”。 Keras: 它不是一个独立的工具箱,更像是一个方便的“说明书”,可以让你更容易地使用TensorFlow或者其他一些工具箱。它让盖房子变得简单一些。 Scikit-learn: 这个工具箱专门用来盖一些比较简单的
使用KERAS.IO的代码实例 keras.io上的代码也可以用于tf.keras,但是需要修改引入。例如,对于下面的代码: from keras.layers import Dense output_layer = Dense(10) 需要改成: from tensorflow.keras.layers import Dense output_layer = Dense(10) 或使用完整路径: from tensorflow import keras output_layer = ke...
· Keras(https://keras.io)是一种高级深度学习API,可以非常简单地训练和运行神经网络。Keras与TensorFlow捆绑在一起,它依赖于TensorFlow进行所有的密集计算。 本书偏向于动手实践的方法,通过具体的工作示例和少量理论来加深对机器学习的直观理解。 虽然你不需要拿起笔记本计算机就可以阅读本书,但我强烈建议你尝试使用代...
tf.nn.crelu() 是串联 ReLU 激活函数。tf.nn.elu() 是指数线性单元(exponential linear unit) 激活函数。我们将在后续用 TensorFlow 和 Keras 训练我们的第一个模型时用到其中一个激活函数。 在开始训练模型之前,我想向你分享 TensorFlow 的提供的“神经网络实验场”工具。它通过可视化的方式帮助你理解神经网络的...
这也是Keras在BatchNormalization中使用的方法。总的来说,每个批归一化的层都通过指数移动平均学习了四个参数:γ(输出缩放矢量),β(输出偏移矢量),μ(最终输入平均值矢量)和σ(最终输入标准差矢量)。μ和σ都是在训练过程中计算的,但只在训练后使用(用于替换公式11-3中批输入平均和标准差)。
Keras: 它不是一个独立的工具箱,更像是一个方便的“说明书”,可以让你更容易地使用TensorFlow或者其他一些工具箱。它让盖房子变得简单一些。 Scikit-learn: 这个工具箱专门用来盖一些比较简单的“小房子”。如果你只需要盖个小棚子,它就足够用了。它比较容易学习,适合初学者。
《机器学习实战 基于Scikit-Learn、Keras和TensorFlow》第3版第3版的主要变化: 所有代码都已更新为最新的库版本。特别是,第3版为Scikit-Learn引入了许多新功能(例如,特征名称的跟踪、基于直方图的梯度提升、标…
这本机器学习畅销书基于TensorFlow 2和Scikit-Learn的新版本进行了全面更新,通过具体的示例、非常少的理论和可用于生产环境的Python框架,从零帮助你直观地理解并掌握构建智能系统所需要的概念和工具。全书分为两部分。第一部分介绍机器学习基础,涵盖以下主题:什么是机器学习,它试图解决什么问题,以及系统的主要类别和基本概...
Keras是一个在Python中使用的高级神经网络库,它运行在TensorFlow之上。Keras的设计理念是“用户友好,模块化,易于扩展”,这使得Keras对于初学者非常友好。然而,对于一些复杂的模型,Keras可能没有TensorFlow和PyTorch那么强大。 编辑 4.Scikit-learn:Scikit-learn是一个广泛用于统计建模和机器学习的Python库。它提供了大量的...
TensorFlow的功能更加全面,适合构建复杂的模型和系统。PyTorch则更加灵活,适合快速原型设计和实验。Scikit-learn则专注于机器学习领域,提供了丰富的算法和工具。Keras则是一个易于使用的神经网络库,适合快速构建深度学习模型。 社区支持 在社区支持方面,这几个库都有广泛的用户基础和活跃的开发者社区。TensorFlow和PyTorch...