SCConv 冗余特征提取的问题 SCConv模块的设计 SCConv模块的性能 方法 SRU CRU 实验 总结 References 导读 今天刷新闻的时候不经意间刷到这个,看了下介绍主要是提出了一个新颖的卷积模块SCConv[1],名字含义是结合空间和通道的重组卷积,此模块目标在于减少视觉任务中由于冗余特征提取而产生的计算成本。 Top1-Accuracy...
SCConv通过引入空间和通道重建机制,使得卷积核能够自适应地调整其形状和尺寸,从而更好地适应不同的任务和数据集。 具体而言,SCConv将卷积操作分为两个步骤:空间和通道重建。在空间重建阶段,SCConv通过学习一个空间变换矩阵,对输入特征图进行空间变换,从而改变特征图的空间结构。在通道重建阶段,SCConv则通过学习一个通...
对于PASCAL VOC数据集,如表4所示,AP@[.5]使用SCConv-R50和 SCConvR101的 SCConvR101 分别为78.68%和80.36%,分别比原ResNet50和ResNet101分别提高了0.8%和1.1%,参数和FLOPs分别降低了34.1%和37%。对于MS COCO数据集,如表5所示,AP@[。[5] SCConv-R50的RetinaNet 为55.1%,优于原始ResNet-50 0.9%,超过22...
作者指出,SCConv 是一种可以直接替代标准卷积操作的插件式卷积模块 ,可以应用于各种卷积神经网络中,从而降低冗余特征并减少计算复杂性。 在后续的实验中,文章作者认为相对于其他流行的 SOTA 方法,他们提出的 SCConv 可以以更低的计算成本获得更高的准确率。下图是 ResNet50 在 ImageNet 上的 Top1 准确性测试结果。
在浏览新闻时,偶然发现一篇引人注目的研究,其中介绍了一个名为SCConv[1]的创新卷积模块。该模块通过结合空间与通道的重构,致力于降低因冗余特征提取而产生的计算负担。 关于Self-Calibrated Convolutions的探讨 需指出的是,此SCConv与程明明教授团队于2020年CVPR上所提SCNet中的SCConv并非同一研究。程教授团队的SCConv...
加入融合ScConv的C2f模块,在ultralytics包中的nn包的modules中的block.py文件中添加改进模块。代码如下: class SRU(nn.Module):def __init__(self,oup_channels: int,group_num: int = 16,gate_treshold: float = 0.5):super().__init__()self.gn = GroupBatchnorm2d(oup_channels, group_num=group...
本章创新为融合SCconv的特征提取方法,顾名思义就是将SCconv模块融合到YOLOv8的骨干特征提取网络部分(backbone),首先我们了解一些SCconv。 SCConv是CVPR2023收录的一个即插即用的空间和通道重建卷积模块,其结构如下: SCconv论文下载地址 同时,在论文中也提供了实现代码: ...
CVPR2023即插即用 | SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy 久违的更新来啦!真是出乎意料,如今这种类型的模块竟然还能被cvpr2023收录,仿佛一切又回到了起点。简单来说,本文推出了一种新型卷积,它能够轻松融入任何卷积模型,实现即插即用。作者从空间和通道两个维度入手,分别设计...
SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy Jiafeng Li1, Ying Wen1*, Lianghua He2 1School of Communication and Electronic Engineering, East China Normal University, Shanghai, China. 2Department of Computer Science and Technology, To...
The proposed SCConv consists of two units: spatial reconstruction unit (SRU) and channel reconstruction unit (CRU).241 Paper Code Cannot find the paper you are looking for? You can Submit a new open access paper. Contact us on: hello@paperswithcode.com . Papers ...