特别是在高分辨率场景下,异步SAR ADC的决策时间几乎只有同步版本的一半。 图2 异步SAR ADC 引入多比较器可以加快SAR ADC的转换速度,避免了因等待单个比较器复位而产生的延迟。在loop-unrolled结构中(图3),每个比较器直接负责CDAC的一个单元,省去了额外的切换逻辑,使得设计更为高效,并且在高速SAR ADC中得到了广泛...
芯力特:什么是SAR ADC SAR ADC也经常被称为二进制搜索ADC,主要应用于中高分辨率和中高转换速率的场合。其工作原理是基于二进制算法搜索的方法,通过对输入信号进行采样,将得到采样值依次与D/A网络生成的参考电压值进行比较,最后得到由最高位到最低位的逻辑输出。基本结构如图1所示:主要包括采样保持电路(S/H)、...
其中逐次逼近型ADC是一种直接ADC。由于其采样速率中等,分辨率中等,且位数较多时使用元器件较少等原因(...
在慢速应用中(信号带宽<10 kHz),高阻抗输入带来较低的输入电流,我们可以用较低截止频率的RC电路,低功率和带宽的精密放大器来驱动ADC,消除了使用专用高速ADC驱动器的必要性,从而降低功耗、尺寸和成本。 精密ADC驱动器设计工具 如果你觉得上面SAR ADC驱动设计很麻烦,也可以使用ADI精密ADC驱动器设计工具。你这样一来,...
AD数据转换-SAR ADC介绍 基本SAR(Successive Approxmation Register)ADC结构中包括采样保持S&H电路、比较器、DAC、SAR逻辑四个单元。 DAC多选用电荷(电容)型,结合电荷再分配原理,S&H与DAC结合在一起组成电荷再分配结构。 一.电荷再分布DAC 1.单端下极板采样...
伪差分SAR ADC结构由伪差分输入、逐次逼近寄存器(SAR)、比较器、数字逻辑和DAC组成。输入信号首先经过伪差分输入,然后被送入逐次逼近寄存器。逐次逼近寄存器通过逐步逼近的方式来确定输入信号的数字表示。比较器用于比较DAC输出和输入信号,数字逻辑用于控制逼近过程。 2. 工作原理: 当输入信号进入ADC时,伪差分结构将其转...
Sigma-delta (西格马-得尔塔) adc Sigma-delta (西格马-得尔塔)转换器的结构相对简单。也称为过采样转换器,它们由西格马-得尔塔调制器和数字抽取滤波器(图5). 该调制器的结构类似于双斜率ADC,包括一个积分器和一个带有反馈回路的比较器,该反馈回路包含一个1位DAC。这个内部DAC只是一个将比较器输入连接到正或负...
SAR ADC(逐次逼近型模数转换器)是一种常用的模数转换器电路,具有高精度和低功耗的特点。它通过逐次逼近的方式,将模拟信号转换为数字信号。 SAR ADC的典型电路结构如下: 1.采样保持电路(Sample and Hold Circuit):用于将输入的模拟信号进行采样并保持,在转换过程中保持信号的稳定性。采样过程发生在采样脉冲的上升沿,...
如果需要感测信号地或从载流地层解耦相对测量结果,信号链设计人员可能考虑迁移至伪差分输入结构。伪差分器件本质上是带参考地的单端ADC。器件执行差分测量,但检测的差分电压是相对于输入信号接地电平测量的单端输入信号。单端输入被驱动至ADC的正输入端(IN+),输入接地电平被驱动至ADC的负输入端(IN-)。需要注意的是,...
SAR ADC的结构主要包括控制逻辑电路、DAC和比较器。其中,控制逻辑电路的非理想因素主要包括开关非线性和噪声,DAC的非理想因素主要包括电容阵列失配以及开关的非线性,比较器非理想因素主要是失调电压以及外接 CLK信号的时钟抖动造成的误差。下面将具体分析这些非理想因素对SAR ADC系统性能的影响。