评估SAM-Med2D 实验结果 定量评估 定性评估 总结 由于医学图像和自然图像之间存在较大差异,以及缺少大规模医学图像基准数据集,这是导致AI在医学领域进展缓慢的原因之一。构建大规模基准数据集和可靠的基线模型,能够推动AI在医疗领域的快速发展,加速医疗向更通用的方向转变。欢迎感兴趣的读者加入群聊与我们讨论!(二维码见...
具体来说,SAM-Med2D同时利用稀疏提示(点和边界框)和密集提示(掩码)。对于稀疏提示,每个点都表示为其位置编码的向量嵌入,以及表示其前景或背景位置的两个学习嵌入的总和。每个边界框使用其左上角和右下角的位置编码,以及表示“左上角”和“右下角”的学习嵌入作为向量嵌入。对于密集提示,我们使用模型第一次迭代后...
Figure 4: The pipeline of SAM-Med2D. We freeze the image encoder and incorporate learnable adapter layers in each Transformer block to acquire domain-specific knowledge in the medical field. We fine-tune the prompt encoder using point, Bbox, and mask information, while updating the parameters o...
SAM-Med2D三大亮点1.最大规模的医学图像分割数据集:作者团队收集并整理了一个庞大而全面的医学图像数据集,涵盖了多种临床分割任务和图像模态。这使得SAM-Med2D在训练过程中能够获得更准确和具有代表性的医学图像信息,弥补了 SAM 在医学领域数据不足的问题。2.更全面的微调方案:相对于现有的医学SAM方法,作者对SAM的...
2.更全面的微调方案:相对于现有的医学SAM方法,作者对SAM的三个重要组成部分都进行了微调,使SAM-Med2D能够更好地适应医学图像的特殊特征和变化,提高分割结果的准确性和稳定性。图2对比了最近基于SAM的微调方法。 图2: SAM-Med2D是一种全面的微调方法,支持对医学图像进行多种提示来生成mask ...
1.最大规模的医学图像分割数据集:作者团队收集并整理了一个庞大而全面的医学图像数据集,涵盖了多种临床分割任务和图像模态。这使得SAM-Med2D在训练过程中能够获得更准确和具有代表性的医学图像信息,弥补了 SAM 在医学领域数据不足的问题...
The pipeline of SAM-Med2D. We freeze the image encoder and incorporate learnable adapter layers in each Transformer block to acquire domain-specific knowledge in the medical field. We fine-tune the prompt encoder using point, Bbox, and mask information, while updating the parameters of the mask...
SA-Med2D-20M概览 SA-Med2D-20M由上海人工智能实验室通用视觉团队构建,汇聚460万张医学图像和1970万个掩膜,涵盖10种模态、31个主要器官和219个类别,形成一个大规模且多样化的医学图像分割数据集。子数据集信息统计 超过120个子数据集的图像数量少于10,000或掩膜数量少于100,000。最大数据集仅包含...
Recently emerged SAM-Med2D represents a state-of-the-art advancement in medical image segmentation. Through fine-tuning the Large Visual Model, Segment Anything Model (SAM), on extensive medical datasets, it has achieved impressive results in cross-modal medical image segmentation. However, its reli...
Recently emerged SAM-Med2D represents a state-of-the-art advancement in medical image segmentation. Through fine-tuning the Large Visual Model, Segment Anything Model (SAM), on extensive medical datasets, it has achieved impressive results in cross-modal