基于这两种模型的sae-lstm算法,通过结合两者的优点,实现了对输入数据的有效编码和解码。 二、基本原理 1. 自编码器(SAE) 自编码器是一种无监督的深度学习模型,它通过训练来学习对输入数据的有效编码和解码。自编码器包含两个部分:编码器(Encoder)和解码器(Decoder)。编码器将输入数据压缩成低维表示,解码器则根据...
LSTM是一个单向的循环神经网络,模型实际上只接收到了“上文”的信息,而没有考虑到“下文”的信息,在实际应用场景中,输出结果可能需要由前面若干输入和后面若干输入共同决定,获取到整个输入序列的信息,而BILSTM网络就可以同时保存双向数据信息。一个完整的BILSTM网络包含输入层,前向LSTM层、反向LSTM层和输出层。 图2...
根据以上分析,单因素 BP神经网络预测模型的结构为:单一隐含层和单一输出层;输入层神经节点数目为5 ;隐含层神经节点数目为24;输出层神经节点数目为1;隐含层传递函数、输出层传递函数、学习函数分别为tansig、logsig和learngdm;性能函数为 mse。 1.2 ELM 1.3 LSTM预测 2 部分代码 clc clear all DataSetName = 'magic...
根据以上分析,单因素 BP神经网络预测模型的结构为:单一隐含层和单一输出层;输入层神经节点数目为5 ;隐含层神经节点数目为24;输出层神经节点数目为1;隐含层传递函数、输出层传递函数、学习函数分别为tansig、logsig和learngdm;性能函数为 mse。 1.2 ELM 1.3 LSTM预测 2 部分代码 clcclear allDataSetName = 'magic04'...
摘要 本发明公开了一种基于SAE‑LSTM模型的大气雾霾预测方法。该方法包括以下步骤:步骤1,获取训练数据:步骤2,训练数据预处理:步骤3,SAE模型预训练:步骤4,LSTM模型预训练:步骤5,SAE‑LSTM模型微调:步骤6,模型在线应用:本发明所述方法具有良好的评估精度和泛化性能,具有良好的实际应用价值。新闻...
看LSTM的模型吧: 1 2 3 4 5 6 7 8 9 defcreate_model(time_window_size, metric): model=Sequential() model.add(LSTM(units=128, input_shape=(time_window_size,1), return_sequences=False)) model.add(Dense(units=time_window_size, activation='linear')) ...
基于BP+ELM+LSTM+BiLSTM+SAELSTM多种算法实现数据预测. 1.1 BP神经网络 BP神经网络模型是目前应用最为广泛神经网络之一。它的本质是通过对历史数据的学习找出数据变化趋势之间的非线性关系,并通过输出量与预期值之间的误差不断调整网络中各个单元的权重,使整个网络的误差最小。因此,为达到较好的预测精度,需要对网络预...
基于改进SAE和双向LSTM的滚动轴承RUL预测方法.docx,滚动轴承是旋转机械设备的重要组成部件, 如果在轴承失效前可准确地预测出剩余使用寿命(Remaining useful life, RUL), 便可及时采取预防措施, 从而可以避免造成重大经济损失和人员伤亡事故[1-2]. 特征提取是进行滚动轴承RUL
4. 预测:将特征表示输入到预测模型中,例如使用递归神经网络(RNN)或长短期记忆网络(LSTM)进行预测。这些模型可以利用时间序列的历史信息进行预测,并输出未来时间步的数值。 5. 模型评估:使用评估指标,如均方根误差(RMSE)或平均绝对误差(MAE),评估模型的预测性能。 基于SAE堆叠自编码器的单维时间序列预测方法可以通过...
同时也在同样的训练样本上用了2层的LSTM作为额外的语言模型做联合训练。值得一提的是,chunk-SAE的再利用使得训练速度和以往的编码相比快了1.5倍,并且模型准确率更高。 论文对比了模型训练结果和以往的Encoder Decoder模型的WER结果。并通过调整Encoder的上下文宽度实现流式语音识别。实验结果如下图(Table 2)所示。实验...