#diff~TRT是要测量的公式,可以理解为y~x,var.equal=TRUE是指两组的方差齐,都服从正太分布 t.test(diff~TRT,dbp, var.equal=TRUE) 输出结果如下: > t.test(diff~TRT,dbp, var.equal=TRUE) Two Sample t-test data: diff by TRT t = -12.15, df = 38, p-value = 1.169e-14 alternative hypothes...
t.test(x,mu=225,alternative="greater") ## ## One Sample t-test ## ## data: x ## t = 0.66852, df = 15, p-value = 0.257 ## alternative hypothesis: true mean is greater than 225 ## 95 percent confidence interval: ## 198.2321 Inf ## sample estimates: ## mean of x ## 241.5...
使用t.test函数进行t检验。例如,如果数据集名为dbp,且包含变量diff和TRT,则可以使用以下代码:t.test。其中,var.equal = TRUE表示假设两组方差相等。如果方差不等,可以设置为FALSE或使用Welch t检验。结果解读:t统计量:表示两组均值差异的大小和方向。自由度:与样本大小和方差有关,用于确定t分...
t.test() => Student's t-Test require(graphics) t.test(1:10, y = c(7:20)) # P = .00001855 t.test(1:10, y = c(7:20, 200)) # P = .1245 -- 不在显著 1. 2. 3. 4. ## 经典案例: 学生犯困数据 plot(extra ~ group, data = sleep) 1. 2. ## 传统表达式 with(sleep, ...
2.1 单组样本均值t检验(One-sample t-test) 2.1.1 方法简介 t检验,又称学生t(student t)检验,是由英国统计学家戈斯特(William Sealy Gosset, 1876-1937)所提出,student则是他的笔名。t检验是一种检验总体均值的统计方法,当数据中仅含单组样本且样本数较大时(通常样本个数≧30的样本可视为样本数较大),可用...
具体实现t检验的R代码如下:> t.test(diff ~ TRT, data = dbp, var.equal = TRUE)运行结果展示了详细信息:- t统计量为-12.15,自由度为38,p值为1.169e-14,这表明两个组间DBP下降的差异有极高的统计显著性。- 95%的置信区间为-12.132758到-8.667242,进一步证实了两组均值有显著差异...
# 单样本t检验 t.test(y,mu=3)# 原假设H0:mu=3(mu就是指总体的均值)# 这里就不赘述配对t检验和单样本t检验,它们的使用方法和两独立样本t检验类似,只是分别多了参数paired=TRUE和mu=3。 当然,在这里你也可以设置参数var.equal=TURE,指定样本之间是等方差的,也可以通过alternative=这个参数来指定单侧检验。
adf.test r语言 #3.2.1 单个总体均值的t检验 # (1)什么是检验? # 检验(test)是统计学中最重要的概念之一,在科学研究和实际业务中都有着广泛的应用。用一句话来概括就是:人们希望通过掌握的数据和其他背景知识确认某个假设是否成立(比如某种药物是否有效,股票是否有上扬的趋势,一种汽车的油耗是否为15mpg,一组...
结果解释:One Sample t-test 这里是对所做的检验类型的描述,告诉我们是单样本的t检验,在这个函数里,如果一个向量参数和一个mu参数,那么做的就是单组独立样本的t检验。 t = -2.8203, df = 10, p-value = 0.01815 结果显示中t=-2.8203是统计量,df代表自由度,p-value是最终的p值,p=0.01815<0.05,于是在...
t.test(y1, y2, paired = TRUE, alternative = "two.sided") 其中,y1和y2代表需要对比的两组数据(数值型向量);paired代表使用的是配对检验;alternative代表备择假设,允许值为“two.sided”(默认),也可以根据需要设置为“greater”或“less”。1、...