RT-DETR-L在COCO val2017上实现了53.0%的AP,在T4GPU上实现了114FPS,RT-DETR-X实现了54.8%的AP和74FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。RT-DETR-R50实现了53.1%的AP和108FPS,RT-DETR-R101实现了54.3%的AP和74FPS,在精度上超过了全部使用相同骨干网络的DETR检测器。 RT-DETR作者团队认...
一、本文介绍本文记录的是基于FCAttention模块的RT-DETR目标检测改进方法研究。FCAttention是图像去雾领域新提出的模块能够有效整合全局和局部信息、合理分配权重的通道注意力机制,使得网络能够更准确地强调有用…
专栏地址:RT-DETR改进专栏—以发表论文的角度,快速准确的找到有效涨点的创新点! 一、RT-DETR原始模型结构介绍 TR-DETR-L原始模型结构如下: # Ultralytics YOLO , AGPL-3.0 license # RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr # ...
RT-DETR优化改进:轻量级上采样CARAFE算子 | 注意力机制大作战 本文独家改进: 上采样操作CARAFE,具有感受野大、内容感知、轻量级、计算速度快等优点,引入RT-DETR二次创新; 1)代替Upsample进行使用; 1.CARAFE介绍 论文:https://arxiv.org/abs/1905.02188 代码:GitHub - open-mmlab/mmdetection: OpenMMLab Detection...
性能与效率的完美平衡:在替换RT-DETR的主干网络后,EfficientFormerV2不仅保持了原有的检测精度,还通过其高效的令牌混合器、前馈网络优化以及创新的双路径注意力下采样等技术,进一步提升了模型的推理速度,为用户带来更加流畅的使用体验。 广泛的应用潜力:得益于EfficientFormerV2的出色表现,改进后的RT-DETR在实时目标检测、...
这期给大家主要介绍RTDETR最新的一期更新:1. 新增CVPR2024-RMT主干,并支持RetBlock改进RepC3.2. 新增2024年新出的Efficient Local Attention,并用其对HSFPN进行二次创新.3. 使用CVPR2021-CoordAttention对HSFPN进行二次创新.RTDETR改进项目汇总:https://blog.csdn.net/qq_
这期给大家带来最新的RTDETR改进点介绍支持DCNV4 使用具有高低频信息提取的搞笑注意力机制HiLo改进AIFI. 使用High-level Screening-feature Pyramid Networks改进RTDETR、YOLOV5-DETR、YOLOV8-DETR的Neck。 github:https://github.com/z1069614715/objectdetection_script 有兴趣赶快入手!新颖的创新点可不等人喔!
本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv5的主干,RT-DETR是今年由百度推出的第一款实时的ViT模型,其在实时检测的领域上号称是打败了YOLO系列,其利用两个主干一个是HGNet一个是ResNet,其中HGNet就是我们今天来讲解的网络结构模型(亲测这个HGNet网络比YOLO的主干更加轻量化和精度更高的主干,非常适合轻量...
基于改进RT-DETR的路面坑槽检测模型 在现代交通基础设施中,路面坑槽如同潜藏的怪兽,时刻威胁着行车安全。传统的路面坑槽检测方法犹如盲人摸象,效率低下且不准确。然而,随着科技的发展,一种名为RT-DETR的模型应运而生,它就像是一位拥有火眼金睛的侦探,能够迅速准确地发现路面上的坑槽。 RT-DETR模型的核心在于其...
本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv8的主干,RT-DETR是今年由百度推出的第一款实时的ViT模型,其在实时检测的领域上号称是打败了YOLO系列,其利用两个主干一个是HGNet一个是ResNet,其中HGNet就是我们今天来讲解的网络结构模型(亲测这个HGNet网络比YOLO的主干更加轻量化和精度更高的主干,非常适合轻量...