此外,RT-DETR支持通过使用不同的解码器层来灵活调整推理速度,而不需要重新训练,这有助于实时目标检测器的实际应用。RT-DETR-L在COCO val2017上实现了53.0%的AP,在T4GPU上实现了114FPS,RT-DETR-X实现了54.8%的AP和74FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。RT-DETR-R50实现了53.1%的AP和108FPS...
三、StarNet模块的实现代码 模块完整介绍、个人总结、实现代码、模块改进、以及各模型添加步骤请访问如下地址: RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块blog.csdn.net/qq_42591591/article/details/144208450 RT-DETR改进合集地址: RT-DETR改进目录一览 | 涉及卷积...
一、本文介绍本文记录的是利用单头自注意力SHSA改进RT-DETR检测模型,详细说明了优化原因,注意事项等。传统的自注意力机制虽能提升性能,但计算量大,内存访问成本高,而SHSA从根本上避免了多注意力头机制带来的…
一、本文介绍 本文记录的是基于SimAM注意力模块的RT-DETR目标检测方法研究。SimAM注意力模块通过优化能量函数来获得每个神经元的三维权重,而==无需引入额外的参数==或增加计算复杂度。若是有轻量化需求的小伙伴,无参的注意力模块也许是一个不错的选择。 专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意...
RT-DETR(Real-TimeDEtectionTRansformer) ,一种基于 DETR 架构的实时端到端检测器,其在速度和精度上取得了 SOTA 性能 为什么会出现: YOLO 检测器有个较大的待改进点是需要 NMS 后处理,其通常难以优化且不够鲁棒,因此检测器的速度存在延迟。为避免该问题,我们将目光移向了不需要 NMS 后处理的 DETR,一种基于 Tr...
本文记录的是利用Focused Linear Attention聚焦线性注意力模块优化RT-DETR的目标检测网络模型。Focused Linear Attention module的作用在于同时解决了线性注意力的焦点能力不足和特征多样性受限的问题,克服了常见线性注意力方法存在性能下降或引入额外计算开销。本文将其加入到RT-DETR中,进一步发挥其性能。
本文记录的是利用单头自注意力SHSA改进RT-DETR检测模型,详细说明了优化原因,注意事项等。传统的自注意力机制虽能提升性能,但计算量大,内存访问成本高,而SHSA==从根本上避免了多注意力头机制带来的计算冗余。并且改进后的模型在相同计算预算下,能够堆叠更多宽度更大的块,从而提高性能。== ...
本文记录的是利用PP-LCNet中的DepSepConv模块优化RT-DETR。本文利用DepSepConv模块改善模型结构,使模型在几乎不增加延迟的情况下提升网络准确度。 专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进 ...
本文记录的是基于FasterNet的RT-DETR轻量化改进方法研究。FasterNet的网络结构借鉴 CNN 的设计理念,通过提出的PConv减少推理时的计算和内存成本,同时减少通道数并增加部分比例,降低延迟,并通过后续的PWConv来弥补特征信息可能缺失的问题,提高了准确性。本文在替换骨干网络中配置了原论文中的fasternet_t0、fasternet_t1、...
简介:RT-DETR改进策略【Conv和Transformer】| ICCV-2023 iRMB 倒置残差移动块 轻量化的注意力模块 一、本文介绍 本文记录的是利用iRMB模块优化RT-DETR的目标检测网络模型。iRMB(Inverted Residual Mobile Block)的作用在于克服了常见模块无法同时吸收CNN 效率建模局部特征和利用Transformer 动态建模能力学习长距离交互的...