而Transformer模型采用了编码器-解码器结构,允许模型在输入序列上进行编码,然后在输出序列上进行解码,从而实现了并行计算,大大提高了模型训练的速度。 特征抽取问题:Transformer模型通过自注意力机制和多层神经网络结构,能够有效地从输入序列中抽取丰富的特征信息,为后续的任务提供更好的支持。 工作原理 Transformer工作原理 ...
Transformer的Encoder的细节如下图,其中的标准化层是Layer Norm, 而残差连接+Layer Norm在原始论文中称为Add and Norm, 当然也有别的论文搞别的Norm并提出更好的摆放顺序之类的结构。也就是,Transformer Encoder对比自注意力最重要的是引入了残差结构,其他都是普通堆叠,尤其是自注意力堆叠成多头。 解码器部分,因为...
Transformer模型 nn.TransformerEncoderLayer nn.TransformerEncoder 的结构 github.com/QInzhengk/Ma 公众号:数学建模与人工智能 Module & parameter 定义模型类 继承nn.Module: 模型类通常继承自 nn.Module 类。 初始化方法 init: 在这个方法中,定义模型的层(例如线性层、卷积层等)。 前向传播方法 forward: 定义数...
而Transformer模型采用了编码器-解码器结构,允许模型在输入序列上进行编码,然后在输出序列上进行解码,从而实现了并行计算,大大提高了模型训练的速度。 特征抽取问题:Transformer模型通过自注意力机制和多层神经网络结构,能够有效地从输入序列中抽取丰富的特征信息,为后续的任务提供更好的支持。 工作原理 Transformer工作原理 ...
Transformer模型概述 Transformer模型是由Google的研究人员在2017年的论文《Attention is All You Need》中首次提出的。这一模型标志着自然语言处理领域的一个重大转折点,因为它完全摒弃了之前广泛使用的循环神经网络(RNN)和长短期记忆网络(LSTM)架构,转而全面采用注意力机制(Attention Mechanism)来处理序列数据。这种独特的...
Transformer结构是在论文《Attention is All You Need》中提出的的模型,如上图所示。图中红框内为Encoder框架,黄框内为Decoder框架,其均是由多个Transformer Block堆叠而成的。这里的Transformer Block就代替了我们之前提到的LSTM和CNN结构作为了我们的特征提取器,也是其最关键的部分。更详细的示意图如下图所示。我们可...
LSTM自己本身也可以作为非线性的单元构建更大型的神经网络 缺点: 1、梯度问题得到了一定的优化,但是并不是直接解决 2、在处理N程度的数据下还行,但是处理到10N程度的话就会有问题 3、当网络深度较深的时候,数据处理消耗的时间和计算量会增加 Transformer: 优点: 1、对比RNN,可以解决不能并行计算的问题 2、对比...
深度学习的出现颠覆了NLP领域。随着基于LSTM和Transformer的语言模型的发明,解决方案通常包括向模型抛出一些高质量的数据,并对其进行训练以预测下一个单词。 从本质上讲,这就是GPT模型正在做的事情。GPT模型总是被不断训练来预测给定句子前缀的下一个单词(标记)。
Transformer 通过自注意力机制,可以在处理序列数据时并行计算,从而大大提升了效率。编码器处理输入序列,解码器生成输出序列,自注意力机制使得模型能够关注到序列中的重要信息。 创新点 Transformer 摒弃了传统 RNN 的循环结构,通过自注意力机制和并行处理,实现了更快的训练速度和更好的效果。
尽管Transformer 在许多方面具有优势,但它也有一些局限,如需要大量的计算资源和内存,以及可能产生较高的计算复杂度。在某些特定任务和资源受限的场景下,RNN 和 LSTM 可能更适合。然而,总体而言,Transformer 已经成为处理序列数据的主流模型。