这篇将介绍另⼀种常用的门控循环神经网络:长短期记忆(long short-term memory,LSTM)。它比门控循环单元的结构稍微复杂⼀点,也是为了解决在RNN网络中梯度衰减的问题,是GRU的一种扩展。 LSTM 中引入了3个门,即输入门(input gate)、遗忘门(forget gate)和输出门(output gate),以及与隐藏状态形状相同的记忆细胞...
GRU是LSTM的一种简单的变体,比LSTM网络的结构更加简单,而且效果也不差,运行效率更高,因此也是当前流行的一种网络结构。 使用GRU能够达到相当的效果,并且相比之下更容易进行训练,能够很大程度上提高训练效率,因此很多时候会更倾向于使用GRU。 LSTM总共有三个门,遗忘门,输入门,输出门,而GRU中呢使用的是两个门,重置...
LSTM: 用output gate 控制,传输给下一个unit GRU:直接传递给下一个unit,不做任何控制 2. input gate 和reset gate 作用位置不同 LSTM: 计算new memory c^(t)c^(t)时 不对上一时刻的信息做任何控制,而是用forget gate 独立的实现这一点 GRU: 计算new memory h^(t)h^(t) 时利用reset gate 对上一时...
LSTM: 计算new memory c^(t)c^(t)时 不对上一时刻的信息做任何控制,而是用forget gate 独立的实现这一点 GRU: 计算new memory h^(t)h^(t) 时利用reset gate 对上一时刻的信息 进行控制。 3. 相似 最大的相似之处就是, 在从t 到 t-1 的更新时都引入了加法。 这个加法的好处在于能防止梯度弥散,...
使用LSTM的原因之一是解决RNN Deep Network的Gradient错误累积太多,以至于Gradient归零或者成为无穷大,所以无法继续进行优化的问题。GRU的构造更简单:比LSTM少一个gate,这样就少几个矩阵乘法。在训练数据很大的情况下GRU能节省很多时间。 五、LSTM具体程序示例
深度学习基础入门篇-序列模型11:循环神经网络 RNN、长短时记忆网络LSTM、门控循环单元GRU原理和应用详解 1.循环神经网络 RNN 生活中,我们经常会遇到或者使用一些时序信号,比如自然语言语音,自然语言文本。以自然语言文本为例,完整的一句话中各个字符之间是有时序关系的,各个字符顺序的调换有可能变成语义完全不同的两句...
3.2 LSTM基本方法 3.3 原理解释 4. GRU 4.1 概念与背景 4.2 GRU基本方法 1. 神经网络基础 上图是一个简单的全连接神经网络结构,每一条连接线上都有一个权重,蕴含着网络学得的“能力”。 不妨记输入 ,隐层 ,输出 。则对于该网络,不同的输入 之间是相互独立的,互不影响。
GRU(Gated Recurrent Unit,门控循环单元)是一种类似于LSTM的循环神经网络(RNN)变体,也是为了解决传统RNN的梯度消失和梯度爆炸问题而提出的。 内部结构如下: 与LSTM相比,GRU的结构更加简单,只有两个门,更新门和重置门 更新门(Update Gate):控制了新输入数据与之前记忆的融合程度。更新门的开关性质允许GRU决定保留多少...
本文主要介绍循环神经网络中的几种重要模型 RNN、LSTM、GRU 的发展过程与结构区别,并详细推导了 RNN 中的梯度爆炸与梯度消失的原因。 1. 循环神经网络背景 前向神经网络和 CNN 在很多任务中都取得不错的效果,但是这些网络结构的通常比较适合用于一些不具有时间或者序列依赖性的数据,接受的输入通常与上一时刻的输入没...
2.3.1 双向lstm 2.3.2 深层双向lstm 三、 GRU 因为LSTM的训练比较慢,而GRU在其上稍微修改,速度可以快很多,而精度基本不变,所以GRU也十分流行 3.1 结构图 3.2 公式 z(t)=σ(W(z)x(t)+U(z)h(t−1))(Update gate)r(t)=σ(W(r)x(t)+U(r)h(t−1))(Reset gate)~h(t)=tanh(Wx(t)+...