我们可以简单的把这张图理解为2个样本的RNAseq结果关联度散点图。X,Y轴分别是两个样本,每个点代表一个基因在两个样品中 FPKM 的对数值(FPKM是RNAseq中衡量基因表达高低的常用数值)。从这张图可以观察,偏离对角线的点越多,说明样品表达量的相关性越低,重复性越差;偏离对角线的点越少,则说明样品间表达量的相...
MA图主要应用在基因组数据可视化方面,实现数据分布情况的展示。早期主要应用于DNA芯片数据,现在常用于高通量测序数据中基因差异表达分析结果的展示。 其计算公式如下: M一般做Y轴,A一般做X轴。 M常对应差异表达分析获得的差异对比组之间基因表达变化log2FC。 A可以利用差异对比组的FPKM进行计算,以R和G来表示差异对比...
在常规RNA-seq项目中,一般样本不多,实验处理效应组合数通常不会超过10种(例如,2类病人× 3个时间点取样 = 6种处理组合),因此每个实验处理效应在所有因素的总体效应中占比都比较大,属于效应比较大的因素。 另外,实验批次效应,离群样本等也属于比较大的效应。以上的效应都易于被PCA获取,因此 PCA的方法可以良好地...
RNA-seq中,对差异表达基因进行GO富集分析,采用topGO软件包实现有向无环图,展示差异基因富集的GO term及其层级关系,从上至下所定义的功能范围越来越具体。 对BP、CC、MF三大类各取富集程度最高的前10位作为DAG图主节点(方框表示),通过包含关系(is_a和part_of)将相...
类似普通RNA-seq,10X ScRNA-seq也会进行差异分析。但两者的分析目标通常不同,所以策略上也有所不同,具体请见下表。 1 分析目标与策略 10X ScRNA-seq在细胞分为若干亚群后,一般需要对细胞亚群进行鉴定。亚群鉴定则依赖于标记基因。例如,如果是血液样本,高表达CD79A的亚群为B细胞;高表达CD3D和CD8A的亚群为T细胞。
cuffdiff_result = read.table(file = "../Desktop/test_data/rnaseq_test_date/diff_out1/gene_exp.diff",header = T) ctrl_fpkm = cuffdiff_result$value_1 treat_fpkm = cuffdiff_result$value_2 log2_foldchange = log2(treat_fpkm / ctrl_fpkm) ...
本文将分别使用循环方式 和ezcox进行批量单基因生存分析,以及使用ggplot2 和forestplot绘制单因素生存分析森林图。 一 载入R包,数据 仍然使用之前处理过的TCGA的SKCM数据,此外需要读入生存数据和临床数据 library(tidyverse)library(openxlsx)library("survival")library("survminer")load("RNAseq.SKCM.RData")#选取部分...
今天来给大家分享的是:怎么一行命令完成RNAseq数据差异分析+火山图+散点图。 一、准备3个文件: 1、基因表达count文件:gene_count_edger.txt 格式如下:(行是基因、列是样本) image 2、 基因表达FPKM文件:gene_exp_edger.txt image 3、样本分组文件:group.txt(第一列是样本、第二列是分组名) ...
首先ATAC-seq数据差异分析拿到的 differentially accessible (DA) peaks 可以去对应到基因组的基因,然后RNA-seq数据通常就有差异表达基因,两个基因集就可以取交集,做韦恩图: 可以看到,这个图里面并没有秀全部的基因,仅仅是差异的那些,RNA-seq和ATAC-seq数据各自的差异都有自己的流程和阈值,两个联合起来就是散点图...
上一期我们探讨了Bulk RNA-seq的价值和学习成本(第1期. 快2024年了,还有必要学习Bulk RNA-seq?),如果你认可了学习Bulk RNA-seq分析的必要性,那我们就一起来开始零基础学习之旅。今天的任务是主成分分析(PCA)图,如果时间紧,可以简单看看整体的分析流程;如果有时间,可以跟着我们的代码和数据,一起练习。