一、DESeq2、edgeR、limma的使用 强烈建议查看官方说明书进行这三种差异分析的学习,链接在文章末尾给出。 注意,这三个包都需要输入counts进行分析,不能用tpm、fpkm等归一化后的数据。 承接上节RNA-seq入门实战(三):在R里面整理表达量counts矩阵和RNA-seq入门实战(二):上游数据的比对计数——Hisat2+ featureCounts...
准备工作已经完成了,接下来进行的就是limma的主体部分。注意进行lmFit时的基因表达矩阵的基因名要放到行名,不要搞错了。 在进行makeContrasts的时候,记得改好分组信息,要和前面的分组矩阵保持一致。 #limma data<-t(data) #最终矩阵的基因名在行名,记得检查一下不要搞错了 fit <- lmFit(data, design) contrast....
limma进行差异分析有两种方法 :limma-trend和voom,在样本测序深度相差不大时两种方法差距不大,而测序深度相差大时voom更有优势,因此我们一般都选择voom的方法进行差异分析。Limma-voom vs limma-trend (bioconductor.org) library(limma) library(edgeR) #分组矩阵design构建 design <- model.matrix(~0+factor(group_...
前提:对于基因芯片的差异表达分析而言,由于普遍认为其数据是服从正态分布,因此差异表达分析无非就是用t检验和或者方差分析应用到每一个基因上。高通量一次性找的基因多,于是就需要对多重试验进行矫正,控制假阳性。目前在基因芯片的分析用的最多的就是limma。 但是,高通量测序(HTS)的read count普遍认为是服从泊松分布...
一般来说,我们在RNA-seq进行差异分析时最好使用Count值,因为limma-voom、edgeR和DESeq2都是针对RNA-seq的Count值分布进行假设,从而设计的软件。但是,在实际过程中,我们并不是总能获得其Count值,而经常得到的是FPKM或者TPM值,那对于这种情况,我们能不能使用类似于分析芯片的方法进行差异分析呢?
一、DESeq2、edgeR、limma的使用 强烈建议查看官方说明书进行这三种差异分析的学习,链接在文章末尾给出。 注意,这三个包都需要输入counts进行分析,不能用tpm、fpkm等归一化后的数据。 承接上节RNA-seq入门实战(三):在R里面整理表达量counts矩阵和RNA-seq入门实战(二):上游数据的比对计数——Hisat2+ featureCounts...
一、DESeq2、edgeR、limma的使用 强烈建议查看官方说明书进行这三种差异分析的学习,链接在文章末尾给出。 注意,这三个包都需要输入counts进行分析,不能用tpm、fpkm等归一化后的数据。 正式分析前先进行目录设置、实验组和对照组的指定: rm(list=ls())options(stringsAsFactors=F)setwd("C:/Users/Lenovo/Desktop/...
到目前为止,Bulk RNA-seq的差异分析主要涉及三种R包(又称为差异分析的三巨头):limma, edgeR, DESeq2。 下面先提供一下3种R包的官网使用说明: limma: 使用手册:https://bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf ...
plotMDS()是limma包中的方法,绘制MDS图,使用无监督聚类方法展示出了样品间的相似性(或差异)。可据此查看各样本是否能够很好地按照分组聚类,评估试验效果,判别离群点,追踪误差的来源等。 plotMDS(dgelist_norm, col = rep(c('red', 'blue'), each = 3)) ...
在处理RNA-Seq数据时,raw read count先被转成log2-counts-per-million (logCPM),然后对mean-variance关系建模。limma使用线性模型来分析microarray和RNA-seq数据。通过经验Bayes方法来调整基因表达值,以提高差异基因的检测能力,并使用FDR控制方法进行多重检验校正。